| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > olm01 | Structured version Visualization version GIF version | ||
| Description: Meet with lattice zero is zero. (chm0 28350 analog.) (Contributed by NM, 8-Nov-2011.) |
| Ref | Expression |
|---|---|
| olm0.b | ⊢ 𝐵 = (Base‘𝐾) |
| olm0.m | ⊢ ∧ = (meet‘𝐾) |
| olm0.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| olm01 | ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olm0.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2622 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | ollat 34500 | . . 3 ⊢ (𝐾 ∈ OL → 𝐾 ∈ Lat) | |
| 4 | 3 | adantr 481 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Lat) |
| 5 | simpr 477 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | olop 34501 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 7 | 6 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ OP) |
| 8 | olm0.z | . . . . 5 ⊢ 0 = (0.‘𝐾) | |
| 9 | 1, 8 | op0cl 34471 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 11 | olm0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 12 | 1, 11 | latmcl 17052 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 ) ∈ 𝐵) |
| 13 | 4, 5, 10, 12 | syl3anc 1326 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) ∈ 𝐵) |
| 14 | 1, 2, 11 | latmle2 17077 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → (𝑋 ∧ 0 )(le‘𝐾) 0 ) |
| 15 | 4, 5, 10, 14 | syl3anc 1326 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 )(le‘𝐾) 0 ) |
| 16 | 1, 2, 8 | op0le 34473 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 17 | 6, 16 | sylan 488 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)𝑋) |
| 18 | 1, 2 | latref 17053 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 0 ∈ 𝐵) → 0 (le‘𝐾) 0 ) |
| 19 | 4, 10, 18 | syl2anc 693 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾) 0 ) |
| 20 | 1, 2, 11 | latlem12 17078 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵)) → (( 0 (le‘𝐾)𝑋 ∧ 0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 ∧ 0 ))) |
| 21 | 4, 10, 5, 10, 20 | syl13anc 1328 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (( 0 (le‘𝐾)𝑋 ∧ 0 (le‘𝐾) 0 ) ↔ 0 (le‘𝐾)(𝑋 ∧ 0 ))) |
| 22 | 17, 19, 21 | mpbi2and 956 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → 0 (le‘𝐾)(𝑋 ∧ 0 )) |
| 23 | 1, 2, 4, 13, 10, 15, 22 | latasymd 17057 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 lecple 15948 meetcmee 16945 0.cp0 17037 Latclat 17045 OPcops 34459 OLcol 34461 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-lat 17046 df-oposet 34463 df-ol 34465 |
| This theorem is referenced by: olm02 34524 omlfh1N 34545 |
| Copyright terms: Public domain | W3C validator |