MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legval Structured version   Visualization version   GIF version

Theorem legval 25479
Description: Value of the less-than relationship. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
Assertion
Ref Expression
legval (𝜑 = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
Distinct variable groups:   𝑒,𝑓,𝐺   𝑥,𝑦,𝑧,𝐼   𝑥,𝑒,𝑦,𝑧,𝑃,𝑓   ,𝑒,𝑓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑒,𝑓)   𝐺(𝑥,𝑦,𝑧)   𝐼(𝑒,𝑓)   (𝑥,𝑦,𝑧,𝑒,𝑓)

Proof of Theorem legval
Dummy variables 𝑑 𝑔 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.l . 2 = (≤G‘𝐺)
2 legval.g . . 3 (𝜑𝐺 ∈ TarskiG)
3 elex 3212 . . 3 (𝐺 ∈ TarskiG → 𝐺 ∈ V)
4 legval.p . . . . . 6 𝑃 = (Base‘𝐺)
5 legval.d . . . . . 6 = (dist‘𝐺)
6 legval.i . . . . . 6 𝐼 = (Itv‘𝐺)
7 simp1 1061 . . . . . . . 8 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝑝 = 𝑃)
87eqcomd 2628 . . . . . . 7 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝑃 = 𝑝)
9 simp2 1062 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝑑 = )
109eqcomd 2628 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → = 𝑑)
1110oveqd 6667 . . . . . . . . . 10 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑥 𝑦) = (𝑥𝑑𝑦))
1211eqeq2d 2632 . . . . . . . . 9 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑓 = (𝑥 𝑦) ↔ 𝑓 = (𝑥𝑑𝑦)))
13 simp3 1063 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝑖 = 𝐼)
1413eqcomd 2628 . . . . . . . . . . . . 13 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → 𝐼 = 𝑖)
1514oveqd 6667 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑥𝐼𝑦) = (𝑥𝑖𝑦))
1615eleq2d 2687 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥𝑖𝑦)))
1710oveqd 6667 . . . . . . . . . . . 12 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑥 𝑧) = (𝑥𝑑𝑧))
1817eqeq2d 2632 . . . . . . . . . . 11 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (𝑒 = (𝑥 𝑧) ↔ 𝑒 = (𝑥𝑑𝑧)))
1916, 18anbi12d 747 . . . . . . . . . 10 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))))
208, 19rexeqbidv 3153 . . . . . . . . 9 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ ∃𝑧𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))))
2112, 20anbi12d 747 . . . . . . . 8 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → ((𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))))
228, 21rexeqbidv 3153 . . . . . . 7 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (∃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ∃𝑦𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))))
238, 22rexeqbidv 3153 . . . . . 6 ((𝑝 = 𝑃𝑑 = 𝑖 = 𝐼) → (∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) ↔ ∃𝑥𝑝𝑦𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))))
244, 5, 6, 23sbcie3s 15917 . . . . 5 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑥𝑝𝑦𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧))) ↔ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))))
2524opabbidv 4716 . . . 4 (𝑔 = 𝐺 → {⟨𝑒, 𝑓⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑥𝑝𝑦𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))} = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
26 df-leg 25478 . . . 4 ≤G = (𝑔 ∈ V ↦ {⟨𝑒, 𝑓⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑥𝑝𝑦𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))})
27 fvex 6201 . . . . . . . . . 10 (dist‘𝐺) ∈ V
285, 27eqeltri 2697 . . . . . . . . 9 ∈ V
2928imaex 7104 . . . . . . . 8 ( “ (𝑃 × 𝑃)) ∈ V
30 p0ex 4853 . . . . . . . 8 {∅} ∈ V
3129, 30unex 6956 . . . . . . 7 (( “ (𝑃 × 𝑃)) ∪ {∅}) ∈ V
3231a1i 11 . . . . . 6 (⊤ → (( “ (𝑃 × 𝑃)) ∪ {∅}) ∈ V)
33 simprr 796 . . . . . . . . . . . . 13 (((((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) ∧ 𝑑𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑))) → 𝑒 = (𝑥 𝑑))
34 ovima0 6813 . . . . . . . . . . . . . 14 ((𝑥𝑃𝑑𝑃) → (𝑥 𝑑) ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}))
3534ad5ant14 1302 . . . . . . . . . . . . 13 (((((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) ∧ 𝑑𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑))) → (𝑥 𝑑) ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}))
3633, 35eqeltrd 2701 . . . . . . . . . . . 12 (((((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) ∧ 𝑑𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑))) → 𝑒 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}))
37 simpllr 799 . . . . . . . . . . . . . 14 (((((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) ∧ 𝑑𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑))) → (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))))
3837simpld 475 . . . . . . . . . . . . 13 (((((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) ∧ 𝑑𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑))) → 𝑓 = (𝑥 𝑦))
39 ovima0 6813 . . . . . . . . . . . . . 14 ((𝑥𝑃𝑦𝑃) → (𝑥 𝑦) ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}))
4039ad3antrrr 766 . . . . . . . . . . . . 13 (((((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) ∧ 𝑑𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑))) → (𝑥 𝑦) ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}))
4138, 40eqeltrd 2701 . . . . . . . . . . . 12 (((((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) ∧ 𝑑𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑))) → 𝑓 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}))
4236, 41jca 554 . . . . . . . . . . 11 (((((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) ∧ 𝑑𝑃) ∧ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑))) → (𝑒 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}) ∧ 𝑓 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅})))
43 simprr 796 . . . . . . . . . . . 12 (((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) → ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))
44 eleq1 2689 . . . . . . . . . . . . . 14 (𝑧 = 𝑑 → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑑 ∈ (𝑥𝐼𝑦)))
45 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑧 = 𝑑 → (𝑥 𝑧) = (𝑥 𝑑))
4645eqeq2d 2632 . . . . . . . . . . . . . 14 (𝑧 = 𝑑 → (𝑒 = (𝑥 𝑧) ↔ 𝑒 = (𝑥 𝑑)))
4744, 46anbi12d 747 . . . . . . . . . . . . 13 (𝑧 = 𝑑 → ((𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑))))
4847cbvrexv 3172 . . . . . . . . . . . 12 (∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)) ↔ ∃𝑑𝑃 (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑)))
4943, 48sylib 208 . . . . . . . . . . 11 (((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) → ∃𝑑𝑃 (𝑑 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑑)))
5042, 49r19.29a 3078 . . . . . . . . . 10 (((𝑥𝑃𝑦𝑃) ∧ (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) → (𝑒 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}) ∧ 𝑓 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅})))
5150ex 450 . . . . . . . . 9 ((𝑥𝑃𝑦𝑃) → ((𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) → (𝑒 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}) ∧ 𝑓 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}))))
5251rexlimivv 3036 . . . . . . . 8 (∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧))) → (𝑒 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}) ∧ 𝑓 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅})))
5352adantl 482 . . . . . . 7 ((⊤ ∧ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) → (𝑒 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}) ∧ 𝑓 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅})))
5453simpld 475 . . . . . 6 ((⊤ ∧ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) → 𝑒 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}))
5553simprd 479 . . . . . 6 ((⊤ ∧ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))) → 𝑓 ∈ (( “ (𝑃 × 𝑃)) ∪ {∅}))
5632, 32, 54, 55opabex2 7227 . . . . 5 (⊤ → {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} ∈ V)
5756trud 1493 . . . 4 {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))} ∈ V
5825, 26, 57fvmpt 6282 . . 3 (𝐺 ∈ V → (≤G‘𝐺) = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
592, 3, 583syl 18 . 2 (𝜑 → (≤G‘𝐺) = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
601, 59syl5eq 2668 1 (𝜑 = {⟨𝑒, 𝑓⟩ ∣ ∃𝑥𝑃𝑦𝑃 (𝑓 = (𝑥 𝑦) ∧ ∃𝑧𝑃 (𝑧 ∈ (𝑥𝐼𝑦) ∧ 𝑒 = (𝑥 𝑧)))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wtru 1484  wcel 1990  wrex 2913  Vcvv 3200  [wsbc 3435  cun 3572  c0 3915  {csn 4177  {copab 4712   × cxp 5112  cima 5117  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  ≤Gcleg 25477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-leg 25478
This theorem is referenced by:  legov  25480
  Copyright terms: Public domain W3C validator