Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpset Structured version   Visualization version   GIF version

Theorem lhpset 35281
Description: The set of co-atoms (lattice hyperplanes). (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lhpset.b 𝐵 = (Base‘𝐾)
lhpset.u 1 = (1.‘𝐾)
lhpset.c 𝐶 = ( ⋖ ‘𝐾)
lhpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpset (𝐾𝐴𝐻 = {𝑤𝐵𝑤𝐶 1 })
Distinct variable groups:   𝑤,𝐵   𝑤,𝐶   𝑤,𝐾   𝑤, 1
Allowed substitution hints:   𝐴(𝑤)   𝐻(𝑤)

Proof of Theorem lhpset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐾𝐴𝐾 ∈ V)
2 lhpset.h . . 3 𝐻 = (LHyp‘𝐾)
3 fveq2 6191 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lhpset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2674 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 eqidd 2623 . . . . . 6 (𝑘 = 𝐾𝑤 = 𝑤)
7 fveq2 6191 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
8 lhpset.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
97, 8syl6eqr 2674 . . . . . 6 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
10 fveq2 6191 . . . . . . 7 (𝑘 = 𝐾 → (1.‘𝑘) = (1.‘𝐾))
11 lhpset.u . . . . . . 7 1 = (1.‘𝐾)
1210, 11syl6eqr 2674 . . . . . 6 (𝑘 = 𝐾 → (1.‘𝑘) = 1 )
136, 9, 12breq123d 4667 . . . . 5 (𝑘 = 𝐾 → (𝑤( ⋖ ‘𝑘)(1.‘𝑘) ↔ 𝑤𝐶 1 ))
145, 13rabeqbidv 3195 . . . 4 (𝑘 = 𝐾 → {𝑤 ∈ (Base‘𝑘) ∣ 𝑤( ⋖ ‘𝑘)(1.‘𝑘)} = {𝑤𝐵𝑤𝐶 1 })
15 df-lhyp 35274 . . . 4 LHyp = (𝑘 ∈ V ↦ {𝑤 ∈ (Base‘𝑘) ∣ 𝑤( ⋖ ‘𝑘)(1.‘𝑘)})
16 fvex 6201 . . . . . 6 (Base‘𝐾) ∈ V
174, 16eqeltri 2697 . . . . 5 𝐵 ∈ V
1817rabex 4813 . . . 4 {𝑤𝐵𝑤𝐶 1 } ∈ V
1914, 15, 18fvmpt 6282 . . 3 (𝐾 ∈ V → (LHyp‘𝐾) = {𝑤𝐵𝑤𝐶 1 })
202, 19syl5eq 2668 . 2 (𝐾 ∈ V → 𝐻 = {𝑤𝐵𝑤𝐶 1 })
211, 20syl 17 1 (𝐾𝐴𝐻 = {𝑤𝐵𝑤𝐶 1 })
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200   class class class wbr 4653  cfv 5888  Basecbs 15857  1.cp1 17038  ccvr 34549  LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-lhyp 35274
This theorem is referenced by:  islhp  35282
  Copyright terms: Public domain W3C validator