MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpdifsn Structured version   Visualization version   GIF version

Theorem lpdifsn 20947
Description: 𝑃 is a limit point of 𝑆 iff it is a limit point of 𝑆 ∖ {𝑃}. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
lpdifsn ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃}))))

Proof of Theorem lpdifsn
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21islp 20944 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
3 ssdifss 3741 . . . 4 (𝑆𝑋 → (𝑆 ∖ {𝑃}) ⊆ 𝑋)
41islp 20944 . . . 4 ((𝐽 ∈ Top ∧ (𝑆 ∖ {𝑃}) ⊆ 𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃}))))
53, 4sylan2 491 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃}))))
6 difabs 3892 . . . . 5 ((𝑆 ∖ {𝑃}) ∖ {𝑃}) = (𝑆 ∖ {𝑃})
76fveq2i 6194 . . . 4 ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃})) = ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))
87eleq2i 2693 . . 3 (𝑃 ∈ ((cls‘𝐽)‘((𝑆 ∖ {𝑃}) ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃})))
95, 8syl6bb 276 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃})) ↔ 𝑃 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑃}))))
102, 9bitr4d 271 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑃 ∈ ((limPt‘𝐽)‘(𝑆 ∖ {𝑃}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cdif 3571  wss 3574  {csn 4177   cuni 4436  cfv 5888  Topctop 20698  clsccl 20822  limPtclp 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-cls 20825  df-lp 20940
This theorem is referenced by:  perfdvf  23667  limcrecl  39861
  Copyright terms: Public domain W3C validator