![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lpolfN | Structured version Visualization version GIF version |
Description: Functionality of a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lpolf.v | ⊢ 𝑉 = (Base‘𝑊) |
lpolf.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lpolf.p | ⊢ 𝑃 = (LPol‘𝑊) |
lpolf.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lpolf.o | ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Ref | Expression |
---|---|
lpolfN | ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpolf.o | . . 3 ⊢ (𝜑 → ⊥ ∈ 𝑃) | |
2 | lpolf.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
3 | lpolf.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lpolf.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | eqid 2622 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
6 | eqid 2622 | . . . . 5 ⊢ (LSAtoms‘𝑊) = (LSAtoms‘𝑊) | |
7 | eqid 2622 | . . . . 5 ⊢ (LSHyp‘𝑊) = (LSHyp‘𝑊) | |
8 | lpolf.p | . . . . 5 ⊢ 𝑃 = (LPol‘𝑊) | |
9 | 3, 4, 5, 6, 7, 8 | islpolN 36772 | . . . 4 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
10 | 2, 9 | syl 17 | . . 3 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
11 | 1, 10 | mpbid 222 | . 2 ⊢ (𝜑 → ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = {(0g‘𝑊)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑊)(( ⊥ ‘𝑥) ∈ (LSHyp‘𝑊) ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)))) |
12 | 11 | simpld 475 | 1 ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 ∀wal 1481 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 ⟶wf 5884 ‘cfv 5888 Basecbs 15857 0gc0g 16100 LSubSpclss 18932 LSAtomsclsa 34261 LSHypclsh 34262 LPolclpoN 36769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-lpolN 36770 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |