MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lpvtx Structured version   Visualization version   GIF version

Theorem lpvtx 25963
Description: The endpoints of a loop (which is an edge at index 𝐽) are two (identical) vertices 𝐴. (Contributed by AV, 1-Feb-2021.)
Hypothesis
Ref Expression
lpvtx.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lpvtx ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))

Proof of Theorem lpvtx
StepHypRef Expression
1 simp1 1061 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐺 ∈ UHGraph )
2 lpvtx.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
32uhgrfun 25961 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
4 funfn 5918 . . . . . 6 (Fun 𝐼𝐼 Fn dom 𝐼)
53, 4sylib 208 . . . . 5 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
653ad2ant1 1082 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐼 Fn dom 𝐼)
7 simp2 1062 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐽 ∈ dom 𝐼)
82uhgrn0 25962 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐼 Fn dom 𝐼𝐽 ∈ dom 𝐼) → (𝐼𝐽) ≠ ∅)
91, 6, 7, 8syl3anc 1326 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → (𝐼𝐽) ≠ ∅)
10 neeq1 2856 . . . . 5 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ≠ ∅ ↔ {𝐴} ≠ ∅))
1110biimpd 219 . . . 4 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ≠ ∅ → {𝐴} ≠ ∅))
12113ad2ant3 1084 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ((𝐼𝐽) ≠ ∅ → {𝐴} ≠ ∅))
139, 12mpd 15 . 2 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → {𝐴} ≠ ∅)
14 eqid 2622 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
1514, 2uhgrss 25959 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼) → (𝐼𝐽) ⊆ (Vtx‘𝐺))
16153adant3 1081 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → (𝐼𝐽) ⊆ (Vtx‘𝐺))
17 sseq1 3626 . . . . 5 ((𝐼𝐽) = {𝐴} → ((𝐼𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
18173ad2ant3 1084 . . . 4 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ((𝐼𝐽) ⊆ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
1916, 18mpbid 222 . . 3 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → {𝐴} ⊆ (Vtx‘𝐺))
20 snnzb 4254 . . . 4 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
21 snssg 4327 . . . 4 (𝐴 ∈ V → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
2220, 21sylbir 225 . . 3 ({𝐴} ≠ ∅ → (𝐴 ∈ (Vtx‘𝐺) ↔ {𝐴} ⊆ (Vtx‘𝐺)))
2319, 22syl5ibrcom 237 . 2 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → ({𝐴} ≠ ∅ → 𝐴 ∈ (Vtx‘𝐺)))
2413, 23mpd 15 1 ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  wss 3574  c0 3915  {csn 4177  dom cdm 5114  Fun wfun 5882   Fn wfn 5883  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-uhgr 25953
This theorem is referenced by:  lppthon  27011  lp1cycl  27012
  Copyright terms: Public domain W3C validator