MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss1 Structured version   Visualization version   GIF version

Theorem lss1 18939
Description: The set of vectors in a left module is a subspace. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lssss.v 𝑉 = (Base‘𝑊)
lssss.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss1 (𝑊 ∈ LMod → 𝑉𝑆)

Proof of Theorem lss1
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2623 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2623 . 2 (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 lssss.v . . 3 𝑉 = (Base‘𝑊)
43a1i 11 . 2 (𝑊 ∈ LMod → 𝑉 = (Base‘𝑊))
5 eqidd 2623 . 2 (𝑊 ∈ LMod → (+g𝑊) = (+g𝑊))
6 eqidd 2623 . 2 (𝑊 ∈ LMod → ( ·𝑠𝑊) = ( ·𝑠𝑊))
7 lssss.s . . 3 𝑆 = (LSubSp‘𝑊)
87a1i 11 . 2 (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊))
9 ssid 3624 . . 3 𝑉𝑉
109a1i 11 . 2 (𝑊 ∈ LMod → 𝑉𝑉)
113lmodbn0 18873 . 2 (𝑊 ∈ LMod → 𝑉 ≠ ∅)
12 simpl 473 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑊 ∈ LMod)
13 eqid 2622 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
14 eqid 2622 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
15 eqid 2622 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
163, 13, 14, 15lmodvscl 18880 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉)
17163adant3r3 1276 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉)
18 simpr3 1069 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → 𝑏𝑉)
19 eqid 2622 . . . 4 (+g𝑊) = (+g𝑊)
203, 19lmodvacl 18877 . . 3 ((𝑊 ∈ LMod ∧ (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑉𝑏𝑉) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑉)
2112, 17, 18, 20syl3anc 1326 . 2 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ 𝑉)
221, 2, 4, 5, 6, 8, 10, 11, 21islssd 18936 1 (𝑊 ∈ LMod → 𝑉𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  LModclmod 18863  LSubSpclss 18932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-lmod 18865  df-lss 18933
This theorem is referenced by:  lssuni  18940  islss3  18959  lssmre  18966  lspf  18974  lspval  18975  lmhmrnlss  19050  lidl1  19220  aspval  19328  isphld  19999  ocv1  20023  islshpcv  34340  dochexmidlem8  36756  hdmaprnlem4N  37145  lnmfg  37652
  Copyright terms: Public domain W3C validator