MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrel Structured version   Visualization version   GIF version

Theorem ltrel 10100
Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltrel Rel <

Proof of Theorem ltrel
StepHypRef Expression
1 ltrelxr 10099 . 2 < ⊆ (ℝ* × ℝ*)
2 relxp 5227 . 2 Rel (ℝ* × ℝ*)
3 relss 5206 . 2 ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < ))
41, 2, 3mp2 9 1 Rel <
Colors of variables: wff setvar class
Syntax hints:  wss 3574   × cxp 5112  Rel wrel 5119  *cxr 10073   < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-pr 4180  df-opab 4713  df-xp 5120  df-rel 5121  df-xr 10078  df-ltxr 10079
This theorem is referenced by:  dflt2  11981  gtiso  29478
  Copyright terms: Public domain W3C validator