![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrel | Structured version Visualization version GIF version |
Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltrel | ⊢ Rel < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelxr 10099 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
2 | relxp 5227 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
3 | relss 5206 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel < |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3574 × cxp 5112 Rel wrel 5119 ℝ*cxr 10073 < clt 10074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-pr 4180 df-opab 4713 df-xp 5120 df-rel 5121 df-xr 10078 df-ltxr 10079 |
This theorem is referenced by: dflt2 11981 gtiso 29478 |
Copyright terms: Public domain | W3C validator |