| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltrel | Structured version Visualization version Unicode version | ||
| Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltrel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelxr 10099 |
. 2
| |
| 2 | relxp 5227 |
. 2
| |
| 3 | relss 5206 |
. 2
| |
| 4 | 1, 2, 3 | mp2 9 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-pr 4180 df-opab 4713 df-xp 5120 df-rel 5121 df-xr 10078 df-ltxr 10079 |
| This theorem is referenced by: dflt2 11981 gtiso 29478 |
| Copyright terms: Public domain | W3C validator |