MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrelre Structured version   Visualization version   GIF version

Theorem ltrelre 9955
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
ltrelre < ⊆ (ℝ × ℝ)

Proof of Theorem ltrelre
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lt 9949 . 2 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
2 opabssxp 5193 . 2 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))} ⊆ (ℝ × ℝ)
31, 2eqsstri 3635 1 < ⊆ (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wex 1704  wcel 1990  wss 3574  cop 4183   class class class wbr 4653  {copab 4712   × cxp 5112  0Rc0r 9688   <R cltr 9693  cr 9935   < cltrr 9940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-in 3581  df-ss 3588  df-opab 4713  df-xp 5120  df-lt 9949
This theorem is referenced by:  ltresr  9961
  Copyright terms: Public domain W3C validator