| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ncn | Structured version Visualization version GIF version | ||
| Description: The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0ncn | ⊢ ¬ ∅ ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nelxp 5143 | . 2 ⊢ ¬ ∅ ∈ (R × R) | |
| 2 | df-c 9942 | . . 3 ⊢ ℂ = (R × R) | |
| 3 | 2 | eleq2i 2693 | . 2 ⊢ (∅ ∈ ℂ ↔ ∅ ∈ (R × R)) |
| 4 | 1, 3 | mtbir 313 | 1 ⊢ ¬ ∅ ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 1990 ∅c0 3915 × cxp 5112 Rcnr 9687 ℂcc 9934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-xp 5120 df-c 9942 |
| This theorem is referenced by: axaddf 9966 axmulf 9967 bj-inftyexpidisj 33097 |
| Copyright terms: Public domain | W3C validator |