MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem1 Structured version   Visualization version   GIF version

Theorem marypha2lem1 8341
Description: Lemma for marypha2 8345. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem1 𝑇 ⊆ (𝐴 × ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem marypha2lem1
StepHypRef Expression
1 marypha2lem.t . 2 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
2 iunss 4561 . . 3 ( 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹) ↔ ∀𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
3 snssi 4339 . . . 4 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
4 fvssunirn 6217 . . . 4 (𝐹𝑥) ⊆ ran 𝐹
5 xpss12 5225 . . . 4 (({𝑥} ⊆ 𝐴 ∧ (𝐹𝑥) ⊆ ran 𝐹) → ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
63, 4, 5sylancl 694 . . 3 (𝑥𝐴 → ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹))
72, 6mprgbir 2927 . 2 𝑥𝐴 ({𝑥} × (𝐹𝑥)) ⊆ (𝐴 × ran 𝐹)
81, 7eqsstri 3635 1 𝑇 ⊆ (𝐴 × ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  wss 3574  {csn 4177   cuni 4436   ciun 4520   × cxp 5112  ran crn 5115  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-iota 5851  df-fv 5896
This theorem is referenced by:  marypha2  8345
  Copyright terms: Public domain W3C validator