MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha1 Structured version   Visualization version   GIF version

Theorem marypha1 8340
Description: (Philip) Hall's marriage theorem, sufficiency: a finite relation contains an injection if there is no subset of its domain which would be forced to violate the pigeonhole principle. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypotheses
Ref Expression
marypha1.a (𝜑𝐴 ∈ Fin)
marypha1.b (𝜑𝐵 ∈ Fin)
marypha1.c (𝜑𝐶 ⊆ (𝐴 × 𝐵))
marypha1.d ((𝜑𝑑𝐴) → 𝑑 ≼ (𝐶𝑑))
Assertion
Ref Expression
marypha1 (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1𝐵)
Distinct variable groups:   𝜑,𝑑,𝑓   𝐴,𝑑,𝑓   𝐶,𝑑,𝑓
Allowed substitution hints:   𝐵(𝑓,𝑑)

Proof of Theorem marypha1
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4168 . . . . 5 (𝑑 ∈ 𝒫 𝐴𝑑𝐴)
2 marypha1.d . . . . 5 ((𝜑𝑑𝐴) → 𝑑 ≼ (𝐶𝑑))
31, 2sylan2 491 . . . 4 ((𝜑𝑑 ∈ 𝒫 𝐴) → 𝑑 ≼ (𝐶𝑑))
43ralrimiva 2966 . . 3 (𝜑 → ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑))
5 marypha1.c . . . . 5 (𝜑𝐶 ⊆ (𝐴 × 𝐵))
6 marypha1.a . . . . . . 7 (𝜑𝐴 ∈ Fin)
7 marypha1.b . . . . . . 7 (𝜑𝐵 ∈ Fin)
8 xpexg 6960 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ V)
96, 7, 8syl2anc 693 . . . . . 6 (𝜑 → (𝐴 × 𝐵) ∈ V)
10 elpw2g 4827 . . . . . 6 ((𝐴 × 𝐵) ∈ V → (𝐶 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝐶 ⊆ (𝐴 × 𝐵)))
119, 10syl 17 . . . . 5 (𝜑 → (𝐶 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝐶 ⊆ (𝐴 × 𝐵)))
125, 11mpbird 247 . . . 4 (𝜑𝐶 ∈ 𝒫 (𝐴 × 𝐵))
13 xpeq2 5129 . . . . . . . . 9 (𝑏 = 𝐵 → (𝐴 × 𝑏) = (𝐴 × 𝐵))
1413pweqd 4163 . . . . . . . 8 (𝑏 = 𝐵 → 𝒫 (𝐴 × 𝑏) = 𝒫 (𝐴 × 𝐵))
1514raleqdv 3144 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V) ↔ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
1615imbi2d 330 . . . . . 6 (𝑏 = 𝐵 → ((𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)) ↔ (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V))))
17 marypha1lem 8339 . . . . . . 7 (𝐴 ∈ Fin → (𝑏 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
1817com12 32 . . . . . 6 (𝑏 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
1916, 18vtoclga 3272 . . . . 5 (𝐵 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)))
207, 6, 19sylc 65 . . . 4 (𝜑 → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V))
21 imaeq1 5461 . . . . . . . 8 (𝑐 = 𝐶 → (𝑐𝑑) = (𝐶𝑑))
2221breq2d 4665 . . . . . . 7 (𝑐 = 𝐶 → (𝑑 ≼ (𝑐𝑑) ↔ 𝑑 ≼ (𝐶𝑑)))
2322ralbidv 2986 . . . . . 6 (𝑐 = 𝐶 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) ↔ ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑)))
24 pweq 4161 . . . . . . 7 (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶)
2524rexeqdv 3145 . . . . . 6 (𝑐 = 𝐶 → (∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V ↔ ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V))
2623, 25imbi12d 334 . . . . 5 (𝑐 = 𝐶 → ((∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V) ↔ (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V)))
2726rspcva 3307 . . . 4 ((𝐶 ∈ 𝒫 (𝐴 × 𝐵) ∧ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴1-1→V)) → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V))
2812, 20, 27syl2anc 693 . . 3 (𝜑 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V))
294, 28mpd 15 . 2 (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V)
30 elpwi 4168 . . . . . . 7 (𝑓 ∈ 𝒫 𝐶𝑓𝐶)
3130, 5sylan9ssr 3617 . . . . . 6 ((𝜑𝑓 ∈ 𝒫 𝐶) → 𝑓 ⊆ (𝐴 × 𝐵))
32 rnss 5354 . . . . . 6 (𝑓 ⊆ (𝐴 × 𝐵) → ran 𝑓 ⊆ ran (𝐴 × 𝐵))
3331, 32syl 17 . . . . 5 ((𝜑𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ ran (𝐴 × 𝐵))
34 rnxpss 5566 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
3533, 34syl6ss 3615 . . . 4 ((𝜑𝑓 ∈ 𝒫 𝐶) → ran 𝑓𝐵)
36 f1ssr 6107 . . . . 5 ((𝑓:𝐴1-1→V ∧ ran 𝑓𝐵) → 𝑓:𝐴1-1𝐵)
3736expcom 451 . . . 4 (ran 𝑓𝐵 → (𝑓:𝐴1-1→V → 𝑓:𝐴1-1𝐵))
3835, 37syl 17 . . 3 ((𝜑𝑓 ∈ 𝒫 𝐶) → (𝑓:𝐴1-1→V → 𝑓:𝐴1-1𝐵))
3938reximdva 3017 . 2 (𝜑 → (∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1→V → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1𝐵))
4029, 39mpd 15 1 (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  𝒫 cpw 4158   class class class wbr 4653   × cxp 5112  ran crn 5115  cima 5117  1-1wf1 5885  cdom 7953  Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959
This theorem is referenced by:  marypha2  8345
  Copyright terms: Public domain W3C validator