| Step | Hyp | Ref
| Expression |
| 1 | | elpwi 4168 |
. . . . 5
⊢ (𝑑 ∈ 𝒫 𝐴 → 𝑑 ⊆ 𝐴) |
| 2 | | marypha1.d |
. . . . 5
⊢ ((𝜑 ∧ 𝑑 ⊆ 𝐴) → 𝑑 ≼ (𝐶 “ 𝑑)) |
| 3 | 1, 2 | sylan2 491 |
. . . 4
⊢ ((𝜑 ∧ 𝑑 ∈ 𝒫 𝐴) → 𝑑 ≼ (𝐶 “ 𝑑)) |
| 4 | 3 | ralrimiva 2966 |
. . 3
⊢ (𝜑 → ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑)) |
| 5 | | marypha1.c |
. . . . 5
⊢ (𝜑 → 𝐶 ⊆ (𝐴 × 𝐵)) |
| 6 | | marypha1.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 7 | | marypha1.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 8 | | xpexg 6960 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ V) |
| 9 | 6, 7, 8 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
| 10 | | elpw2g 4827 |
. . . . . 6
⊢ ((𝐴 × 𝐵) ∈ V → (𝐶 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝐶 ⊆ (𝐴 × 𝐵))) |
| 11 | 9, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝐶 ⊆ (𝐴 × 𝐵))) |
| 12 | 5, 11 | mpbird 247 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝒫 (𝐴 × 𝐵)) |
| 13 | | xpeq2 5129 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → (𝐴 × 𝑏) = (𝐴 × 𝐵)) |
| 14 | 13 | pweqd 4163 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → 𝒫 (𝐴 × 𝑏) = 𝒫 (𝐴 × 𝐵)) |
| 15 | 14 | raleqdv 3144 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V) ↔ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
| 16 | 15 | imbi2d 330 |
. . . . . 6
⊢ (𝑏 = 𝐵 → ((𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)) ↔ (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)))) |
| 17 | | marypha1lem 8339 |
. . . . . . 7
⊢ (𝐴 ∈ Fin → (𝑏 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
| 18 | 17 | com12 32 |
. . . . . 6
⊢ (𝑏 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝑏)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
| 19 | 16, 18 | vtoclga 3272 |
. . . . 5
⊢ (𝐵 ∈ Fin → (𝐴 ∈ Fin → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V))) |
| 20 | 7, 6, 19 | sylc 65 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)) |
| 21 | | imaeq1 5461 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (𝑐 “ 𝑑) = (𝐶 “ 𝑑)) |
| 22 | 21 | breq2d 4665 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (𝑑 ≼ (𝑐 “ 𝑑) ↔ 𝑑 ≼ (𝐶 “ 𝑑))) |
| 23 | 22 | ralbidv 2986 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) ↔ ∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑))) |
| 24 | | pweq 4161 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → 𝒫 𝑐 = 𝒫 𝐶) |
| 25 | 24 | rexeqdv 3145 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V ↔ ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V)) |
| 26 | 23, 25 | imbi12d 334 |
. . . . 5
⊢ (𝑐 = 𝐶 → ((∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V) ↔ (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V))) |
| 27 | 26 | rspcva 3307 |
. . . 4
⊢ ((𝐶 ∈ 𝒫 (𝐴 × 𝐵) ∧ ∀𝑐 ∈ 𝒫 (𝐴 × 𝐵)(∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝑐 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝑐𝑓:𝐴–1-1→V)) → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V)) |
| 28 | 12, 20, 27 | syl2anc 693 |
. . 3
⊢ (𝜑 → (∀𝑑 ∈ 𝒫 𝐴𝑑 ≼ (𝐶 “ 𝑑) → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V)) |
| 29 | 4, 28 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V) |
| 30 | | elpwi 4168 |
. . . . . . 7
⊢ (𝑓 ∈ 𝒫 𝐶 → 𝑓 ⊆ 𝐶) |
| 31 | 30, 5 | sylan9ssr 3617 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → 𝑓 ⊆ (𝐴 × 𝐵)) |
| 32 | | rnss 5354 |
. . . . . 6
⊢ (𝑓 ⊆ (𝐴 × 𝐵) → ran 𝑓 ⊆ ran (𝐴 × 𝐵)) |
| 33 | 31, 32 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ ran (𝐴 × 𝐵)) |
| 34 | | rnxpss 5566 |
. . . . 5
⊢ ran
(𝐴 × 𝐵) ⊆ 𝐵 |
| 35 | 33, 34 | syl6ss 3615 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → ran 𝑓 ⊆ 𝐵) |
| 36 | | f1ssr 6107 |
. . . . 5
⊢ ((𝑓:𝐴–1-1→V ∧ ran 𝑓 ⊆ 𝐵) → 𝑓:𝐴–1-1→𝐵) |
| 37 | 36 | expcom 451 |
. . . 4
⊢ (ran
𝑓 ⊆ 𝐵 → (𝑓:𝐴–1-1→V → 𝑓:𝐴–1-1→𝐵)) |
| 38 | 35, 37 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ 𝒫 𝐶) → (𝑓:𝐴–1-1→V → 𝑓:𝐴–1-1→𝐵)) |
| 39 | 38 | reximdva 3017 |
. 2
⊢ (𝜑 → (∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→V → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→𝐵)) |
| 40 | 29, 39 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓 ∈ 𝒫 𝐶𝑓:𝐴–1-1→𝐵) |