Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidln0 Structured version   Visualization version   GIF version

Theorem maxidln0 33844
Description: A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
maxidln0.1 𝐺 = (1st𝑅)
maxidln0.2 𝐻 = (2nd𝑅)
maxidln0.3 𝑍 = (GId‘𝐺)
maxidln0.4 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
maxidln0 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈𝑍)

Proof of Theorem maxidln0
StepHypRef Expression
1 maxidlidl 33840 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅))
2 maxidln0.1 . . . . . 6 𝐺 = (1st𝑅)
3 maxidln0.3 . . . . . 6 𝑍 = (GId‘𝐺)
42, 3idl0cl 33817 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → 𝑍𝑀)
51, 4syldan 487 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍𝑀)
6 maxidln0.2 . . . . 5 𝐻 = (2nd𝑅)
7 maxidln0.4 . . . . 5 𝑈 = (GId‘𝐻)
86, 7maxidln1 33843 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈𝑀)
9 nelneq 2725 . . . 4 ((𝑍𝑀 ∧ ¬ 𝑈𝑀) → ¬ 𝑍 = 𝑈)
105, 8, 9syl2anc 693 . . 3 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑍 = 𝑈)
1110neqned 2801 . 2 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍𝑈)
1211necomd 2849 1 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  cfv 5888  1st c1st 7166  2nd c2nd 7167  GIdcgi 27344  RingOpscrngo 33693  Idlcidl 33806  MaxIdlcmaxidl 33808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-riota 6611  df-ov 6653  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694  df-idl 33809  df-maxidl 33811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator