Proof of Theorem mdetunilem1
| Step | Hyp | Ref
| Expression |
| 1 | | simpr3 1069 |
. 2
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐹 ≠ 𝐺) |
| 2 | | simpl3 1066 |
. 2
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) |
| 3 | | neeq2 2857 |
. . . . 5
⊢ (𝑧 = 𝐺 → (𝐹 ≠ 𝑧 ↔ 𝐹 ≠ 𝐺)) |
| 4 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑧 = 𝐺 → (𝑧𝐸𝑤) = (𝐺𝐸𝑤)) |
| 5 | 4 | eqeq2d 2632 |
. . . . . 6
⊢ (𝑧 = 𝐺 → ((𝐹𝐸𝑤) = (𝑧𝐸𝑤) ↔ (𝐹𝐸𝑤) = (𝐺𝐸𝑤))) |
| 6 | 5 | ralbidv 2986 |
. . . . 5
⊢ (𝑧 = 𝐺 → (∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤) ↔ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤))) |
| 7 | 3, 6 | anbi12d 747 |
. . . 4
⊢ (𝑧 = 𝐺 → ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) ↔ (𝐹 ≠ 𝐺 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)))) |
| 8 | 7 | imbi1d 331 |
. . 3
⊢ (𝑧 = 𝐺 → (((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ) ↔ ((𝐹 ≠ 𝐺 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
| 9 | | simpl2 1065 |
. . . 4
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐸 ∈ 𝐵) |
| 10 | | simpr1 1067 |
. . . 4
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐹 ∈ 𝑁) |
| 11 | | simpl1 1064 |
. . . . 5
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝜑) |
| 12 | | mdetuni.al |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
| 13 | 11, 12 | syl 17 |
. . . 4
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
| 14 | | oveq 6656 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐸 → (𝑦𝑥𝑤) = (𝑦𝐸𝑤)) |
| 15 | | oveq 6656 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐸 → (𝑧𝑥𝑤) = (𝑧𝐸𝑤)) |
| 16 | 14, 15 | eqeq12d 2637 |
. . . . . . . . 9
⊢ (𝑥 = 𝐸 → ((𝑦𝑥𝑤) = (𝑧𝑥𝑤) ↔ (𝑦𝐸𝑤) = (𝑧𝐸𝑤))) |
| 17 | 16 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑥 = 𝐸 → (∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤) ↔ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤))) |
| 18 | 17 | anbi2d 740 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) ↔ (𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)))) |
| 19 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = 𝐸 → (𝐷‘𝑥) = (𝐷‘𝐸)) |
| 20 | 19 | eqeq1d 2624 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → ((𝐷‘𝑥) = 0 ↔ (𝐷‘𝐸) = 0 )) |
| 21 | 18, 20 | imbi12d 334 |
. . . . . 6
⊢ (𝑥 = 𝐸 → (((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 ) ↔ ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
| 22 | 21 | ralbidv 2986 |
. . . . 5
⊢ (𝑥 = 𝐸 → (∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 ) ↔ ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
| 23 | | neeq1 2856 |
. . . . . . . 8
⊢ (𝑦 = 𝐹 → (𝑦 ≠ 𝑧 ↔ 𝐹 ≠ 𝑧)) |
| 24 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐹 → (𝑦𝐸𝑤) = (𝐹𝐸𝑤)) |
| 25 | 24 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (𝑦 = 𝐹 → ((𝑦𝐸𝑤) = (𝑧𝐸𝑤) ↔ (𝐹𝐸𝑤) = (𝑧𝐸𝑤))) |
| 26 | 25 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑦 = 𝐹 → (∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤) ↔ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤))) |
| 27 | 23, 26 | anbi12d 747 |
. . . . . . 7
⊢ (𝑦 = 𝐹 → ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) ↔ (𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)))) |
| 28 | 27 | imbi1d 331 |
. . . . . 6
⊢ (𝑦 = 𝐹 → (((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ) ↔ ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
| 29 | 28 | ralbidv 2986 |
. . . . 5
⊢ (𝑦 = 𝐹 → (∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ) ↔ ∀𝑧 ∈ 𝑁 ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 ))) |
| 30 | 22, 29 | rspc2va 3323 |
. . . 4
⊢ (((𝐸 ∈ 𝐵 ∧ 𝐹 ∈ 𝑁) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) → ∀𝑧 ∈ 𝑁 ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 )) |
| 31 | 9, 10, 13, 30 | syl21anc 1325 |
. . 3
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ∀𝑧 ∈ 𝑁 ((𝐹 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝑧𝐸𝑤)) → (𝐷‘𝐸) = 0 )) |
| 32 | | simpr2 1068 |
. . 3
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → 𝐺 ∈ 𝑁) |
| 33 | 8, 31, 32 | rspcdva 3316 |
. 2
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → ((𝐹 ≠ 𝐺 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) → (𝐷‘𝐸) = 0 )) |
| 34 | 1, 2, 33 | mp2and 715 |
1
⊢ (((𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀𝑤 ∈ 𝑁 (𝐹𝐸𝑤) = (𝐺𝐸𝑤)) ∧ (𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺)) → (𝐷‘𝐸) = 0 ) |