MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem2 Structured version   Visualization version   GIF version

Theorem mdetunilem2 20419
Description: Lemma for mdetuni 20428. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem2.ph (𝜓𝜑)
mdetunilem2.eg (𝜓 → (𝐸𝑁𝐺𝑁𝐸𝐺))
mdetunilem2.f ((𝜓𝑏𝑁) → 𝐹𝐾)
mdetunilem2.h ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
Assertion
Ref Expression
mdetunilem2 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))) = 0 )
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏   𝐺,𝑎,𝑏   𝐹,𝑎
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐹(𝑏)   𝐻(𝑎,𝑏)

Proof of Theorem mdetunilem2
StepHypRef Expression
1 mdetunilem2.ph . 2 (𝜓𝜑)
2 mdetuni.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 mdetuni.k . . 3 𝐾 = (Base‘𝑅)
4 mdetuni.b . . 3 𝐵 = (Base‘𝐴)
5 mdetuni.n . . . 4 (𝜑𝑁 ∈ Fin)
61, 5syl 17 . . 3 (𝜓𝑁 ∈ Fin)
7 mdetuni.r . . . 4 (𝜑𝑅 ∈ Ring)
81, 7syl 17 . . 3 (𝜓𝑅 ∈ Ring)
9 mdetunilem2.f . . . . 5 ((𝜓𝑏𝑁) → 𝐹𝐾)
1093adant2 1080 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → 𝐹𝐾)
11 mdetunilem2.h . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
1210, 11ifcld 4131 . . . 4 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐺, 𝐹, 𝐻) ∈ 𝐾)
1310, 12ifcld 4131 . . 3 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) ∈ 𝐾)
142, 3, 4, 6, 8, 13matbas2d 20229 . 2 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))) ∈ 𝐵)
15 eqidd 2623 . . . . 5 ((𝜓𝑤𝑁) → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))))
16 iftrue 4092 . . . . . . 7 (𝑎 = 𝐸 → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = 𝐹)
17 csbeq1a 3542 . . . . . . 7 (𝑏 = 𝑤𝐹 = 𝑤 / 𝑏𝐹)
1816, 17sylan9eq 2676 . . . . . 6 ((𝑎 = 𝐸𝑏 = 𝑤) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = 𝑤 / 𝑏𝐹)
1918adantl 482 . . . . 5 (((𝜓𝑤𝑁) ∧ (𝑎 = 𝐸𝑏 = 𝑤)) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = 𝑤 / 𝑏𝐹)
20 eqidd 2623 . . . . 5 (((𝜓𝑤𝑁) ∧ 𝑎 = 𝐸) → 𝑁 = 𝑁)
21 mdetunilem2.eg . . . . . . 7 (𝜓 → (𝐸𝑁𝐺𝑁𝐸𝐺))
2221simp1d 1073 . . . . . 6 (𝜓𝐸𝑁)
2322adantr 481 . . . . 5 ((𝜓𝑤𝑁) → 𝐸𝑁)
24 simpr 477 . . . . 5 ((𝜓𝑤𝑁) → 𝑤𝑁)
25 nfv 1843 . . . . . . 7 𝑏(𝜓𝑤𝑁)
26 nfcsb1v 3549 . . . . . . . 8 𝑏𝑤 / 𝑏𝐹
2726nfel1 2779 . . . . . . 7 𝑏𝑤 / 𝑏𝐹𝐾
2825, 27nfim 1825 . . . . . 6 𝑏((𝜓𝑤𝑁) → 𝑤 / 𝑏𝐹𝐾)
29 eleq1 2689 . . . . . . . 8 (𝑏 = 𝑤 → (𝑏𝑁𝑤𝑁))
3029anbi2d 740 . . . . . . 7 (𝑏 = 𝑤 → ((𝜓𝑏𝑁) ↔ (𝜓𝑤𝑁)))
3117eleq1d 2686 . . . . . . 7 (𝑏 = 𝑤 → (𝐹𝐾𝑤 / 𝑏𝐹𝐾))
3230, 31imbi12d 334 . . . . . 6 (𝑏 = 𝑤 → (((𝜓𝑏𝑁) → 𝐹𝐾) ↔ ((𝜓𝑤𝑁) → 𝑤 / 𝑏𝐹𝐾)))
3328, 32, 9chvar 2262 . . . . 5 ((𝜓𝑤𝑁) → 𝑤 / 𝑏𝐹𝐾)
34 nfv 1843 . . . . 5 𝑎(𝜓𝑤𝑁)
35 nfcv 2764 . . . . 5 𝑏𝐸
36 nfcv 2764 . . . . 5 𝑎𝑤
37 nfcv 2764 . . . . 5 𝑎𝑤 / 𝑏𝐹
3815, 19, 20, 23, 24, 33, 34, 25, 35, 36, 37, 26ovmpt2dxf 6786 . . . 4 ((𝜓𝑤𝑁) → (𝐸(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = 𝑤 / 𝑏𝐹)
3921simp3d 1075 . . . . . . . . . . . . 13 (𝜓𝐸𝐺)
4039adantr 481 . . . . . . . . . . . 12 ((𝜓𝑤𝑁) → 𝐸𝐺)
41 neeq2 2857 . . . . . . . . . . . 12 (𝑎 = 𝐺 → (𝐸𝑎𝐸𝐺))
4240, 41syl5ibrcom 237 . . . . . . . . . . 11 ((𝜓𝑤𝑁) → (𝑎 = 𝐺𝐸𝑎))
4342imp 445 . . . . . . . . . 10 (((𝜓𝑤𝑁) ∧ 𝑎 = 𝐺) → 𝐸𝑎)
4443necomd 2849 . . . . . . . . 9 (((𝜓𝑤𝑁) ∧ 𝑎 = 𝐺) → 𝑎𝐸)
4544neneqd 2799 . . . . . . . 8 (((𝜓𝑤𝑁) ∧ 𝑎 = 𝐺) → ¬ 𝑎 = 𝐸)
4645adantrr 753 . . . . . . 7 (((𝜓𝑤𝑁) ∧ (𝑎 = 𝐺𝑏 = 𝑤)) → ¬ 𝑎 = 𝐸)
4746iffalsed 4097 . . . . . 6 (((𝜓𝑤𝑁) ∧ (𝑎 = 𝐺𝑏 = 𝑤)) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = if(𝑎 = 𝐺, 𝐹, 𝐻))
48 iftrue 4092 . . . . . . . 8 (𝑎 = 𝐺 → if(𝑎 = 𝐺, 𝐹, 𝐻) = 𝐹)
4948, 17sylan9eq 2676 . . . . . . 7 ((𝑎 = 𝐺𝑏 = 𝑤) → if(𝑎 = 𝐺, 𝐹, 𝐻) = 𝑤 / 𝑏𝐹)
5049adantl 482 . . . . . 6 (((𝜓𝑤𝑁) ∧ (𝑎 = 𝐺𝑏 = 𝑤)) → if(𝑎 = 𝐺, 𝐹, 𝐻) = 𝑤 / 𝑏𝐹)
5147, 50eqtrd 2656 . . . . 5 (((𝜓𝑤𝑁) ∧ (𝑎 = 𝐺𝑏 = 𝑤)) → if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)) = 𝑤 / 𝑏𝐹)
52 eqidd 2623 . . . . 5 (((𝜓𝑤𝑁) ∧ 𝑎 = 𝐺) → 𝑁 = 𝑁)
5321simp2d 1074 . . . . . 6 (𝜓𝐺𝑁)
5453adantr 481 . . . . 5 ((𝜓𝑤𝑁) → 𝐺𝑁)
55 nfcv 2764 . . . . 5 𝑏𝐺
5615, 51, 52, 54, 24, 33, 34, 25, 55, 36, 37, 26ovmpt2dxf 6786 . . . 4 ((𝜓𝑤𝑁) → (𝐺(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = 𝑤 / 𝑏𝐹)
5738, 56eqtr4d 2659 . . 3 ((𝜓𝑤𝑁) → (𝐸(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = (𝐺(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤))
5857ralrimiva 2966 . 2 (𝜓 → ∀𝑤𝑁 (𝐸(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = (𝐺(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤))
59 mdetuni.0g . . 3 0 = (0g𝑅)
60 mdetuni.1r . . 3 1 = (1r𝑅)
61 mdetuni.pg . . 3 + = (+g𝑅)
62 mdetuni.tg . . 3 · = (.r𝑅)
63 mdetuni.ff . . 3 (𝜑𝐷:𝐵𝐾)
64 mdetuni.al . . 3 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
65 mdetuni.li . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘𝑓 + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
66 mdetuni.sc . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘𝑓 · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
672, 4, 3, 59, 60, 61, 62, 5, 7, 63, 64, 65, 66mdetunilem1 20418 . 2 (((𝜑 ∧ (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻))) ∈ 𝐵 ∧ ∀𝑤𝑁 (𝐸(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤) = (𝐺(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))𝑤)) ∧ (𝐸𝑁𝐺𝑁𝐸𝐺)) → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))) = 0 )
681, 14, 58, 21, 67syl31anc 1329 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐹, if(𝑎 = 𝐺, 𝐹, 𝐻)))) = 0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  csb 3533  cdif 3571  ifcif 4086  {csn 4177   × cxp 5112  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑓 cof 6895  Fincfn 7955  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100  1rcur 18501  Ringcrg 18547   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mat 20214
This theorem is referenced by:  mdetunilem6  20423  mdetunilem8  20425
  Copyright terms: Public domain W3C validator