| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mdetunilem1 | Structured version Visualization version Unicode version | ||
| Description: Lemma for mdetuni 20428. (Contributed by SO, 14-Jul-2018.) |
| Ref | Expression |
|---|---|
| mdetuni.a |
|
| mdetuni.b |
|
| mdetuni.k |
|
| mdetuni.0g |
|
| mdetuni.1r |
|
| mdetuni.pg |
|
| mdetuni.tg |
|
| mdetuni.n |
|
| mdetuni.r |
|
| mdetuni.ff |
|
| mdetuni.al |
|
| mdetuni.li |
|
| mdetuni.sc |
|
| Ref | Expression |
|---|---|
| mdetunilem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1069 |
. 2
| |
| 2 | simpl3 1066 |
. 2
| |
| 3 | neeq2 2857 |
. . . . 5
| |
| 4 | oveq1 6657 |
. . . . . . 7
| |
| 5 | 4 | eqeq2d 2632 |
. . . . . 6
|
| 6 | 5 | ralbidv 2986 |
. . . . 5
|
| 7 | 3, 6 | anbi12d 747 |
. . . 4
|
| 8 | 7 | imbi1d 331 |
. . 3
|
| 9 | simpl2 1065 |
. . . 4
| |
| 10 | simpr1 1067 |
. . . 4
| |
| 11 | simpl1 1064 |
. . . . 5
| |
| 12 | mdetuni.al |
. . . . 5
| |
| 13 | 11, 12 | syl 17 |
. . . 4
|
| 14 | oveq 6656 |
. . . . . . . . . 10
| |
| 15 | oveq 6656 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | eqeq12d 2637 |
. . . . . . . . 9
|
| 17 | 16 | ralbidv 2986 |
. . . . . . . 8
|
| 18 | 17 | anbi2d 740 |
. . . . . . 7
|
| 19 | fveq2 6191 |
. . . . . . . 8
| |
| 20 | 19 | eqeq1d 2624 |
. . . . . . 7
|
| 21 | 18, 20 | imbi12d 334 |
. . . . . 6
|
| 22 | 21 | ralbidv 2986 |
. . . . 5
|
| 23 | neeq1 2856 |
. . . . . . . 8
| |
| 24 | oveq1 6657 |
. . . . . . . . . 10
| |
| 25 | 24 | eqeq1d 2624 |
. . . . . . . . 9
|
| 26 | 25 | ralbidv 2986 |
. . . . . . . 8
|
| 27 | 23, 26 | anbi12d 747 |
. . . . . . 7
|
| 28 | 27 | imbi1d 331 |
. . . . . 6
|
| 29 | 28 | ralbidv 2986 |
. . . . 5
|
| 30 | 22, 29 | rspc2va 3323 |
. . . 4
|
| 31 | 9, 10, 13, 30 | syl21anc 1325 |
. . 3
|
| 32 | simpr2 1068 |
. . 3
| |
| 33 | 8, 31, 32 | rspcdva 3316 |
. 2
|
| 34 | 1, 2, 33 | mp2and 715 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: mdetunilem2 20419 mdetuni0 20427 |
| Copyright terms: Public domain | W3C validator |