MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metn0 Structured version   Visualization version   GIF version

Theorem metn0 22165
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
metn0 (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅))

Proof of Theorem metn0
StepHypRef Expression
1 metf 22135 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ)
2 frel 6050 . . . . 5 (𝐷:(𝑋 × 𝑋)⟶ℝ → Rel 𝐷)
3 reldm0 5343 . . . . 5 (Rel 𝐷 → (𝐷 = ∅ ↔ dom 𝐷 = ∅))
41, 2, 33syl 18 . . . 4 (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ dom 𝐷 = ∅))
5 fdm 6051 . . . . . 6 (𝐷:(𝑋 × 𝑋)⟶ℝ → dom 𝐷 = (𝑋 × 𝑋))
61, 5syl 17 . . . . 5 (𝐷 ∈ (Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋))
76eqeq1d 2624 . . . 4 (𝐷 ∈ (Met‘𝑋) → (dom 𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅))
84, 7bitrd 268 . . 3 (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ (𝑋 × 𝑋) = ∅))
9 xpeq0 5554 . . . 4 ((𝑋 × 𝑋) = ∅ ↔ (𝑋 = ∅ ∨ 𝑋 = ∅))
10 oridm 536 . . . 4 ((𝑋 = ∅ ∨ 𝑋 = ∅) ↔ 𝑋 = ∅)
119, 10bitri 264 . . 3 ((𝑋 × 𝑋) = ∅ ↔ 𝑋 = ∅)
128, 11syl6bb 276 . 2 (𝐷 ∈ (Met‘𝑋) → (𝐷 = ∅ ↔ 𝑋 = ∅))
1312necon3bid 2838 1 (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383   = wceq 1483  wcel 1990  wne 2794  c0 3915   × cxp 5112  dom cdm 5114  Rel wrel 5119  wf 5884  cfv 5888  cr 9935  Metcme 19732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-met 19740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator