| Step | Hyp | Ref
| Expression |
| 1 | | mgmidsssn0.o |
. 2
⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
| 2 | | simpr 477 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
| 3 | | mgmidsssn0.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
| 4 | | mgmidsssn0.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
| 5 | | mgmidsssn0.p |
. . . . . . . . 9
⊢ + =
(+g‘𝐺) |
| 6 | | oveq1 6657 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (𝑧 + 𝑦) = (𝑥 + 𝑦)) |
| 7 | 6 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → ((𝑧 + 𝑦) = 𝑦 ↔ (𝑥 + 𝑦) = 𝑦)) |
| 8 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (𝑦 + 𝑧) = (𝑦 + 𝑥)) |
| 9 | 8 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → ((𝑦 + 𝑧) = 𝑦 ↔ (𝑦 + 𝑥) = 𝑦)) |
| 10 | 7, 9 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦) ↔ ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
| 11 | 10 | ralbidv 2986 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑥 → (∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) |
| 12 | 11 | rspcev 3309 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)) |
| 13 | 12 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ∃𝑧 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑧 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑧) = 𝑦)) |
| 14 | 3, 4, 5, 13 | ismgmid 17264 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → ((𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)) ↔ 0 = 𝑥)) |
| 15 | 2, 14 | mpbid 222 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 0 = 𝑥) |
| 16 | 15 | eqcomd 2628 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 = 0 ) |
| 17 | | velsn 4193 |
. . . . . 6
⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
| 18 | 16, 17 | sylibr 224 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦))) → 𝑥 ∈ { 0 }) |
| 19 | 18 | expr 643 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) |
| 20 | 19 | ralrimiva 2966 |
. . 3
⊢ (𝐺 ∈ 𝑉 → ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) |
| 21 | | rabss 3679 |
. . 3
⊢ ({𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 } ↔ ∀𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦) → 𝑥 ∈ { 0 })) |
| 22 | 20, 21 | sylibr 224 |
. 2
⊢ (𝐺 ∈ 𝑉 → {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} ⊆ { 0 }) |
| 23 | 1, 22 | syl5eqss 3649 |
1
⊢ (𝐺 ∈ 𝑉 → 𝑂 ⊆ { 0 }) |