Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmpropd Structured version   Visualization version   GIF version

Theorem mgmpropd 41775
Description: If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmpropd.k (𝜑𝐵 = (Base‘𝐾))
mgmpropd.l (𝜑𝐵 = (Base‘𝐿))
mgmpropd.b (𝜑𝐵 ≠ ∅)
mgmpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
mgmpropd (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem mgmpropd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝜑)
2 mgmpropd.k . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝐾))
32eqcomd 2628 . . . . . . . . . 10 (𝜑 → (Base‘𝐾) = 𝐵)
43eleq2d 2687 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↔ 𝑥𝐵))
54biimpcd 239 . . . . . . . 8 (𝑥 ∈ (Base‘𝐾) → (𝜑𝑥𝐵))
65adantr 481 . . . . . . 7 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝜑𝑥𝐵))
76impcom 446 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥𝐵)
83eleq2d 2687 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (Base‘𝐾) ↔ 𝑦𝐵))
98biimpd 219 . . . . . . . 8 (𝜑 → (𝑦 ∈ (Base‘𝐾) → 𝑦𝐵))
109adantld 483 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵))
1110imp 445 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑦𝐵)
12 mgmpropd.p . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
131, 7, 11, 12syl12anc 1324 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1413eleq1d 2686 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾)))
15142ralbidva 2988 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾)))
16 mgmpropd.l . . . . 5 (𝜑𝐵 = (Base‘𝐿))
172, 16eqtr3d 2658 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
1817eleq2d 2687 . . . . 5 (𝜑 → ((𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
1917, 18raleqbidv 3152 . . . 4 (𝜑 → (∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
2017, 19raleqbidv 3152 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
2115, 20bitrd 268 . 2 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
22 mgmpropd.b . . 3 (𝜑𝐵 ≠ ∅)
23 n0 3931 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑎 𝑎𝐵)
242eleq2d 2687 . . . . . 6 (𝜑 → (𝑎𝐵𝑎 ∈ (Base‘𝐾)))
25 eqid 2622 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
26 eqid 2622 . . . . . . 7 (+g𝐾) = (+g𝐾)
2725, 26ismgmn0 17244 . . . . . 6 (𝑎 ∈ (Base‘𝐾) → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾)))
2824, 27syl6bi 243 . . . . 5 (𝜑 → (𝑎𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
2928exlimdv 1861 . . . 4 (𝜑 → (∃𝑎 𝑎𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
3023, 29syl5bi 232 . . 3 (𝜑 → (𝐵 ≠ ∅ → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
3122, 30mpd 15 . 2 (𝜑 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾)))
3216eleq2d 2687 . . . . . 6 (𝜑 → (𝑎𝐵𝑎 ∈ (Base‘𝐿)))
33 eqid 2622 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
34 eqid 2622 . . . . . . 7 (+g𝐿) = (+g𝐿)
3533, 34ismgmn0 17244 . . . . . 6 (𝑎 ∈ (Base‘𝐿) → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
3632, 35syl6bi 243 . . . . 5 (𝜑 → (𝑎𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3736exlimdv 1861 . . . 4 (𝜑 → (∃𝑎 𝑎𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3823, 37syl5bi 232 . . 3 (𝜑 → (𝐵 ≠ ∅ → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3922, 38mpd 15 . 2 (𝜑 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
4021, 31, 393bitr4d 300 1 (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  c0 3915  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Mgmcmgm 17240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-dm 5124  df-iota 5851  df-fv 5896  df-ov 6653  df-mgm 17242
This theorem is referenced by:  mgmhmpropd  41785
  Copyright terms: Public domain W3C validator