| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgmpropd | Structured version Visualization version Unicode version | ||
| Description: If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020.) |
| Ref | Expression |
|---|---|
| mgmpropd.k |
|
| mgmpropd.l |
|
| mgmpropd.b |
|
| mgmpropd.p |
|
| Ref | Expression |
|---|---|
| mgmpropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . . 6
| |
| 2 | mgmpropd.k |
. . . . . . . . . . 11
| |
| 3 | 2 | eqcomd 2628 |
. . . . . . . . . 10
|
| 4 | 3 | eleq2d 2687 |
. . . . . . . . 9
|
| 5 | 4 | biimpcd 239 |
. . . . . . . 8
|
| 6 | 5 | adantr 481 |
. . . . . . 7
|
| 7 | 6 | impcom 446 |
. . . . . 6
|
| 8 | 3 | eleq2d 2687 |
. . . . . . . . 9
|
| 9 | 8 | biimpd 219 |
. . . . . . . 8
|
| 10 | 9 | adantld 483 |
. . . . . . 7
|
| 11 | 10 | imp 445 |
. . . . . 6
|
| 12 | mgmpropd.p |
. . . . . 6
| |
| 13 | 1, 7, 11, 12 | syl12anc 1324 |
. . . . 5
|
| 14 | 13 | eleq1d 2686 |
. . . 4
|
| 15 | 14 | 2ralbidva 2988 |
. . 3
|
| 16 | mgmpropd.l |
. . . . 5
| |
| 17 | 2, 16 | eqtr3d 2658 |
. . . 4
|
| 18 | 17 | eleq2d 2687 |
. . . . 5
|
| 19 | 17, 18 | raleqbidv 3152 |
. . . 4
|
| 20 | 17, 19 | raleqbidv 3152 |
. . 3
|
| 21 | 15, 20 | bitrd 268 |
. 2
|
| 22 | mgmpropd.b |
. . 3
| |
| 23 | n0 3931 |
. . . 4
| |
| 24 | 2 | eleq2d 2687 |
. . . . . 6
|
| 25 | eqid 2622 |
. . . . . . 7
| |
| 26 | eqid 2622 |
. . . . . . 7
| |
| 27 | 25, 26 | ismgmn0 17244 |
. . . . . 6
|
| 28 | 24, 27 | syl6bi 243 |
. . . . 5
|
| 29 | 28 | exlimdv 1861 |
. . . 4
|
| 30 | 23, 29 | syl5bi 232 |
. . 3
|
| 31 | 22, 30 | mpd 15 |
. 2
|
| 32 | 16 | eleq2d 2687 |
. . . . . 6
|
| 33 | eqid 2622 |
. . . . . . 7
| |
| 34 | eqid 2622 |
. . . . . . 7
| |
| 35 | 33, 34 | ismgmn0 17244 |
. . . . . 6
|
| 36 | 32, 35 | syl6bi 243 |
. . . . 5
|
| 37 | 36 | exlimdv 1861 |
. . . 4
|
| 38 | 23, 37 | syl5bi 232 |
. . 3
|
| 39 | 22, 38 | mpd 15 |
. 2
|
| 40 | 21, 31, 39 | 3bitr4d 300 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 df-mgm 17242 |
| This theorem is referenced by: mgmhmpropd 41785 |
| Copyright terms: Public domain | W3C validator |