MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmco Structured version   Visualization version   GIF version

Theorem mhmco 17362
Description: The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
mhmco ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))

Proof of Theorem mhmco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 17339 . . 3 (𝐹 ∈ (𝑇 MndHom 𝑈) → 𝑈 ∈ Mnd)
2 mhmrcl1 17338 . . 3 (𝐺 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
31, 2anim12ci 591 . 2 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd))
4 eqid 2622 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
5 eqid 2622 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
64, 5mhmf 17340 . . . 4 (𝐹 ∈ (𝑇 MndHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
7 eqid 2622 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
87, 4mhmf 17340 . . . 4 (𝐺 ∈ (𝑆 MndHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
9 fco 6058 . . . 4 ((𝐹:(Base‘𝑇)⟶(Base‘𝑈) ∧ 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) → (𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈))
106, 8, 9syl2an 494 . . 3 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈))
11 eqid 2622 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
12 eqid 2622 . . . . . . . . . 10 (+g𝑇) = (+g𝑇)
137, 11, 12mhmlin 17342 . . . . . . . . 9 ((𝐺 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
14133expb 1266 . . . . . . . 8 ((𝐺 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
1514adantll 750 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
1615fveq2d 6195 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))) = (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))))
17 simpll 790 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐹 ∈ (𝑇 MndHom 𝑈))
188ad2antlr 763 . . . . . . . 8 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
19 simprl 794 . . . . . . . 8 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
2018, 19ffvelrnd 6360 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
21 simprr 796 . . . . . . . 8 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
2218, 21ffvelrnd 6360 . . . . . . 7 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺𝑦) ∈ (Base‘𝑇))
23 eqid 2622 . . . . . . . 8 (+g𝑈) = (+g𝑈)
244, 12, 23mhmlin 17342 . . . . . . 7 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ (𝐺𝑥) ∈ (Base‘𝑇) ∧ (𝐺𝑦) ∈ (Base‘𝑇)) → (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
2517, 20, 22, 24syl3anc 1326 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
2616, 25eqtrd 2656 . . . . 5 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
272adantl 482 . . . . . . 7 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Mnd)
287, 11mndcl 17301 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
29283expb 1266 . . . . . . 7 ((𝑆 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
3027, 29sylan 488 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
31 fvco3 6275 . . . . . 6 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆)) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))))
3218, 30, 31syl2anc 693 . . . . 5 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))))
33 fvco3 6275 . . . . . . 7 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3418, 19, 33syl2anc 693 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
35 fvco3 6275 . . . . . . 7 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3618, 21, 35syl2anc 693 . . . . . 6 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3734, 36oveq12d 6668 . . . . 5 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
3826, 32, 373eqtr4d 2666 . . . 4 (((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))
3938ralrimivva 2971 . . 3 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))
408adantl 482 . . . . 5 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
41 eqid 2622 . . . . . . 7 (0g𝑆) = (0g𝑆)
427, 41mndidcl 17308 . . . . . 6 (𝑆 ∈ Mnd → (0g𝑆) ∈ (Base‘𝑆))
4327, 42syl 17 . . . . 5 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (0g𝑆) ∈ (Base‘𝑆))
44 fvco3 6275 . . . . 5 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ (0g𝑆) ∈ (Base‘𝑆)) → ((𝐹𝐺)‘(0g𝑆)) = (𝐹‘(𝐺‘(0g𝑆))))
4540, 43, 44syl2anc 693 . . . 4 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ((𝐹𝐺)‘(0g𝑆)) = (𝐹‘(𝐺‘(0g𝑆))))
46 eqid 2622 . . . . . . 7 (0g𝑇) = (0g𝑇)
4741, 46mhm0 17343 . . . . . 6 (𝐺 ∈ (𝑆 MndHom 𝑇) → (𝐺‘(0g𝑆)) = (0g𝑇))
4847adantl 482 . . . . 5 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐺‘(0g𝑆)) = (0g𝑇))
4948fveq2d 6195 . . . 4 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(𝐺‘(0g𝑆))) = (𝐹‘(0g𝑇)))
50 eqid 2622 . . . . . 6 (0g𝑈) = (0g𝑈)
5146, 50mhm0 17343 . . . . 5 (𝐹 ∈ (𝑇 MndHom 𝑈) → (𝐹‘(0g𝑇)) = (0g𝑈))
5251adantr 481 . . . 4 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹‘(0g𝑇)) = (0g𝑈))
5345, 49, 523eqtrd 2660 . . 3 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ((𝐹𝐺)‘(0g𝑆)) = (0g𝑈))
5410, 39, 533jca 1242 . 2 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → ((𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) ∧ ((𝐹𝐺)‘(0g𝑆)) = (0g𝑈)))
557, 5, 11, 23, 41, 50ismhm 17337 . 2 ((𝐹𝐺) ∈ (𝑆 MndHom 𝑈) ↔ ((𝑆 ∈ Mnd ∧ 𝑈 ∈ Mnd) ∧ ((𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) ∧ ((𝐹𝐺)‘(0g𝑆)) = (0g𝑈))))
563, 54, 55sylanbrc 698 1 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  0gc0g 16100  Mndcmnd 17294   MndHom cmhm 17333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335
This theorem is referenced by:  ghmco  17680  rhmco  18737  zrhpsgnmhm  19930  lgseisenlem4  25103
  Copyright terms: Public domain W3C validator