MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moi2 Structured version   Visualization version   GIF version

Theorem moi2 3387
Description: Consequence of "at most one." (Contributed by NM, 29-Jun-2008.)
Hypothesis
Ref Expression
moi2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
moi2 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑𝜓)) → 𝑥 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem moi2
StepHypRef Expression
1 moi2.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21mob2 3386 . . . 4 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
323expa 1265 . . 3 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝑥 = 𝐴𝜓))
43biimprd 238 . 2 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝜓𝑥 = 𝐴))
54impr 649 1 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑𝜓)) → 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  ∃*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202
This theorem is referenced by:  fsum  14451  fprod  14671  txcn  21429  haustsms2  21940
  Copyright terms: Public domain W3C validator