MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum Structured version   Visualization version   GIF version

Theorem fsum 14451
Description: The value of a sum over a nonempty finite set. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Mario Carneiro, 13-Jun-2019.)
Hypotheses
Ref Expression
fsum.1 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
fsum.2 (𝜑𝑀 ∈ ℕ)
fsum.3 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
fsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsum.5 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
Assertion
Ref Expression
fsum (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , 𝐺)‘𝑀))
Distinct variable groups:   𝐵,𝑛   𝐶,𝑘   𝑘,𝑛,𝐹   𝜑,𝑘,𝑛   𝐴,𝑘,𝑛   𝑘,𝐺,𝑛   𝑘,𝑀,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑛)

Proof of Theorem fsum
Dummy variables 𝑓 𝑖 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 14417 . 2 Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 fvex 6201 . . 3 (seq1( + , 𝐺)‘𝑀) ∈ V
3 eleq1 2689 . . . . . . . . . 10 (𝑛 = 𝑗 → (𝑛𝐴𝑗𝐴))
4 csbeq1 3536 . . . . . . . . . 10 (𝑛 = 𝑗𝑛 / 𝑘𝐵 = 𝑗 / 𝑘𝐵)
53, 4ifbieq1d 4109 . . . . . . . . 9 (𝑛 = 𝑗 → if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0) = if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
65cbvmptv 4750 . . . . . . . 8 (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)) = (𝑗 ∈ ℤ ↦ if(𝑗𝐴, 𝑗 / 𝑘𝐵, 0))
7 fsum.4 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 2966 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
9 nfcsb1v 3549 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
109nfel1 2779 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ ℂ
11 csbeq1a 3542 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
1211eleq1d 2686 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝑗 / 𝑘𝐵 ∈ ℂ))
1310, 12rspc 3303 . . . . . . . . 9 (𝑗𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑗 / 𝑘𝐵 ∈ ℂ))
148, 13mpan9 486 . . . . . . . 8 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
15 fveq2 6191 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
1615csbeq1d 3540 . . . . . . . . . 10 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵)
17 csbco 3543 . . . . . . . . . 10 (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵 = (𝑓𝑖) / 𝑘𝐵
1816, 17syl6eqr 2674 . . . . . . . . 9 (𝑛 = 𝑖(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵)
1918cbvmptv 4750 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑖 ∈ ℕ ↦ (𝑓𝑖) / 𝑗𝑗 / 𝑘𝐵)
206, 14, 19summo 14448 . . . . . . 7 (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
21 fsum.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
22 fsum.3 . . . . . . . . . . . 12 (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)
23 f1of 6137 . . . . . . . . . . . 12 (𝐹:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)⟶𝐴)
2422, 23syl 17 . . . . . . . . . . 11 (𝜑𝐹:(1...𝑀)⟶𝐴)
25 ovex 6678 . . . . . . . . . . 11 (1...𝑀) ∈ V
26 fex 6490 . . . . . . . . . . 11 ((𝐹:(1...𝑀)⟶𝐴 ∧ (1...𝑀) ∈ V) → 𝐹 ∈ V)
2724, 25, 26sylancl 694 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
28 nnuz 11723 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
2921, 28syl6eleq 2711 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (ℤ‘1))
30 fsum.5 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)
31 elfznn 12370 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (1...𝑀) → 𝑛 ∈ ℕ)
3231adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑀)) → 𝑛 ∈ ℕ)
33 fvex 6201 . . . . . . . . . . . . . . . . 17 (𝐺𝑛) ∈ V
3430, 33syl6eqelr 2710 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...𝑀)) → 𝐶 ∈ V)
35 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ 𝐶) = (𝑛 ∈ ℕ ↦ 𝐶)
3635fvmpt2 6291 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝐶 ∈ V) → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = 𝐶)
3732, 34, 36syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...𝑀)) → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = 𝐶)
3830, 37eqtr4d 2659 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛))
3938ralrimiva 2966 . . . . . . . . . . . . 13 (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛))
40 nffvmpt1 6199 . . . . . . . . . . . . . . 15 𝑛((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)
4140nfeq2 2780 . . . . . . . . . . . . . 14 𝑛(𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)
42 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
43 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘))
4442, 43eqeq12d 2637 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) ↔ (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)))
4541, 44rspc 3303 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑀) → (∀𝑛 ∈ (1...𝑀)(𝐺𝑛) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑛) → (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘)))
4639, 45mpan9 486 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...𝑀)) → (𝐺𝑘) = ((𝑛 ∈ ℕ ↦ 𝐶)‘𝑘))
4729, 46seqfveq 12825 . . . . . . . . . . 11 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))
4822, 47jca 554 . . . . . . . . . 10 (𝜑 → (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀)))
49 f1oeq1 6127 . . . . . . . . . . . 12 (𝑓 = 𝐹 → (𝑓:(1...𝑀)–1-1-onto𝐴𝐹:(1...𝑀)–1-1-onto𝐴))
50 fveq1 6190 . . . . . . . . . . . . . . . . . 18 (𝑓 = 𝐹 → (𝑓𝑛) = (𝐹𝑛))
5150csbeq1d 3540 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = (𝐹𝑛) / 𝑘𝐵)
52 fvex 6201 . . . . . . . . . . . . . . . . . 18 (𝐹𝑛) ∈ V
53 fsum.1 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)
5452, 53csbie 3559 . . . . . . . . . . . . . . . . 17 (𝐹𝑛) / 𝑘𝐵 = 𝐶
5551, 54syl6eq 2672 . . . . . . . . . . . . . . . 16 (𝑓 = 𝐹(𝑓𝑛) / 𝑘𝐵 = 𝐶)
5655mpteq2dv 4745 . . . . . . . . . . . . . . 15 (𝑓 = 𝐹 → (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ 𝐶))
5756seqeq3d 12809 . . . . . . . . . . . . . 14 (𝑓 = 𝐹 → seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)) = seq1( + , (𝑛 ∈ ℕ ↦ 𝐶)))
5857fveq1d 6193 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))
5958eqeq2d 2632 . . . . . . . . . . . 12 (𝑓 = 𝐹 → ((seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀)))
6049, 59anbi12d 747 . . . . . . . . . . 11 (𝑓 = 𝐹 → ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)) ↔ (𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀))))
6160spcegv 3294 . . . . . . . . . 10 (𝐹 ∈ V → ((𝐹:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ 𝐶))‘𝑀)) → ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))))
6227, 48, 61sylc 65 . . . . . . . . 9 (𝜑 → ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)))
63 oveq2 6658 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀))
64 f1oeq2 6128 . . . . . . . . . . . . 13 ((1...𝑚) = (1...𝑀) → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑀)–1-1-onto𝐴))
6563, 64syl 17 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (𝑓:(1...𝑚)–1-1-onto𝐴𝑓:(1...𝑀)–1-1-onto𝐴))
66 fveq2 6191 . . . . . . . . . . . . 13 (𝑚 = 𝑀 → (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))
6766eqeq2d 2632 . . . . . . . . . . . 12 (𝑚 = 𝑀 → ((seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀)))
6865, 67anbi12d 747 . . . . . . . . . . 11 (𝑚 = 𝑀 → ((𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))))
6968exbidv 1850 . . . . . . . . . 10 (𝑚 = 𝑀 → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))))
7069rspcev 3309 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ ∃𝑓(𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑀))) → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
7121, 62, 70syl2anc 693 . . . . . . . 8 (𝜑 → ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
7271olcd 408 . . . . . . 7 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
73 breq2 4657 . . . . . . . . . . . . . 14 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥 ↔ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)))
7473anbi2d 740 . . . . . . . . . . . . 13 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀))))
7574rexbidv 3052 . . . . . . . . . . . 12 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ↔ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀))))
76 eqeq1 2626 . . . . . . . . . . . . . . 15 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) ↔ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
7776anbi2d 740 . . . . . . . . . . . . . 14 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ (𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
7877exbidv 1850 . . . . . . . . . . . . 13 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
7978rexbidv 3052 . . . . . . . . . . . 12 (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) ↔ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
8075, 79orbi12d 746 . . . . . . . . . . 11 (𝑥 = (seq1( + , 𝐺)‘𝑀) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
8180moi2 3387 . . . . . . . . . 10 ((((seq1( + , 𝐺)‘𝑀) ∈ V ∧ ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
822, 81mpanl1 716 . . . . . . . . 9 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
8382ancom2s 844 . . . . . . . 8 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))) → 𝑥 = (seq1( + , 𝐺)‘𝑀))
8483expr 643 . . . . . . 7 ((∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ∧ (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ (seq1( + , 𝐺)‘𝑀)) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴 ∧ (seq1( + , 𝐺)‘𝑀) = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8520, 72, 84syl2anc 693 . . . . . 6 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8672, 80syl5ibrcom 237 . . . . . 6 (𝜑 → (𝑥 = (seq1( + , 𝐺)‘𝑀) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
8785, 86impbid 202 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8887adantr 481 . . . 4 ((𝜑 ∧ (seq1( + , 𝐺)‘𝑀) ∈ V) → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ 𝑥 = (seq1( + , 𝐺)‘𝑀)))
8988iota5 5871 . . 3 ((𝜑 ∧ (seq1( + , 𝐺)‘𝑀) ∈ V) → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (seq1( + , 𝐺)‘𝑀))
902, 89mpan2 707 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (seq1( + , 𝐺)‘𝑀))
911, 90syl5eq 2668 1 (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , 𝐺)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  ∃*wmo 2471  wral 2912  wrex 2913  Vcvv 3200  csb 3533  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  cio 5849  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  cn 11020  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  cli 14215  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417
This theorem is referenced by:  sumz  14453  fsumf1o  14454  fsumcl2lem  14462  fsumadd  14470  sumsnf  14473  sumsn  14475  fsummulc2  14516  fsumconst  14522  fsumrelem  14539  gsumfsum  19813  sumsnd  39185
  Copyright terms: Public domain W3C validator