![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > haustsms2 | Structured version Visualization version GIF version |
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015.) |
Ref | Expression |
---|---|
tsmscl.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmscl.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsmscl.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsmscl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tsmscl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
haustsms.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
haustsms.h | ⊢ (𝜑 → 𝐽 ∈ Haus) |
Ref | Expression |
---|---|
haustsms2 | ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → 𝑋 ∈ (𝐺 tsums 𝐹)) | |
2 | tsmscl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
3 | tsmscl.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | tsmscl.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
5 | tsmscl.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | tsmscl.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
7 | haustsms.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
8 | haustsms.h | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Haus) | |
9 | 2, 3, 4, 5, 6, 7, 8 | haustsms 21939 | . . . . . . 7 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) |
10 | 9 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) |
11 | eleq1 2689 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑋 ∈ (𝐺 tsums 𝐹))) | |
12 | 11 | moi2 3387 | . . . . . . . 8 ⊢ (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ (𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑋 ∈ (𝐺 tsums 𝐹))) → 𝑥 = 𝑋) |
13 | 12 | ancom2s 844 | . . . . . . 7 ⊢ (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ (𝑋 ∈ (𝐺 tsums 𝐹) ∧ 𝑥 ∈ (𝐺 tsums 𝐹))) → 𝑥 = 𝑋) |
14 | 13 | expr 643 | . . . . . 6 ⊢ (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 = 𝑋)) |
15 | 1, 10, 1, 14 | syl21anc 1325 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 = 𝑋)) |
16 | velsn 4193 | . . . . 5 ⊢ (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋) | |
17 | 15, 16 | syl6ibr 242 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ {𝑋})) |
18 | 17 | ssrdv 3609 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ⊆ {𝑋}) |
19 | snssi 4339 | . . . 4 ⊢ (𝑋 ∈ (𝐺 tsums 𝐹) → {𝑋} ⊆ (𝐺 tsums 𝐹)) | |
20 | 19 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → {𝑋} ⊆ (𝐺 tsums 𝐹)) |
21 | 18, 20 | eqssd 3620 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = {𝑋}) |
22 | 21 | ex 450 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃*wmo 2471 ⊆ wss 3574 {csn 4177 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 TopOpenctopn 16082 CMndccmn 18193 TopSpctps 20736 Hauscha 21112 tsums ctsu 21929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-0g 16102 df-gsum 16103 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-cntz 17750 df-cmn 18195 df-fbas 19743 df-fg 19744 df-top 20699 df-topon 20716 df-topsp 20737 df-nei 20902 df-haus 21119 df-fil 21650 df-flim 21743 df-flf 21744 df-tsms 21930 |
This theorem is referenced by: haustsmsid 21944 xrge0tsms 22637 xrge0tsmsd 29785 |
Copyright terms: Public domain | W3C validator |