MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpan2i Structured version   Visualization version   GIF version

Theorem mpan2i 713
Description: An inference based on modus ponens. (Contributed by NM, 10-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
Hypotheses
Ref Expression
mpan2i.1 𝜒
mpan2i.2 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
mpan2i (𝜑 → (𝜓𝜃))

Proof of Theorem mpan2i
StepHypRef Expression
1 mpan2i.1 . . 3 𝜒
21a1i 11 . 2 (𝜑𝜒)
3 mpan2i.2 . 2 (𝜑 → ((𝜓𝜒) → 𝜃))
42, 3mpan2d 710 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  tcwf  8746  cflecard  9075  sqrlem7  13989  setciso  16741  lsmss1  18079  sincosq1lem  24249  pjcompi  28531  mdsl1i  29180  dfon2lem3  31690  dfon2lem7  31694  tan2h  33401  dvasin  33496  ismrc  37264  nnsum4primes4  41677  nnsum4primesprm  41679  nnsum4primesgbe  41681  nnsum4primesle9  41683  rngciso  41982  rngcisoALTV  41994  ringciso  42033  ringcisoALTV  42057  aacllem  42547
  Copyright terms: Public domain W3C validator