MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem7 Structured version   Visualization version   GIF version

Theorem sqrlem7 13989
Description: Lemma for 01sqrex 13990. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = 𝐴)
Distinct variable groups:   𝑎,𝑏,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑦   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem7
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . 3 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
2 sqrlem1.2 . . 3 𝐵 = sup(𝑆, ℝ, < )
3 sqrlem5.3 . . 3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
41, 2, 3sqrlem6 13988 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ≤ 𝐴)
51, 2sqrlem3 13985 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
65adantr 481 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦))
71, 2sqrlem4 13986 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
87adantr 481 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
98simpld 475 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℝ+)
10 rpre 11839 . . . . . . . . . . 11 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
1110adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐴 ∈ ℝ)
12 rpre 11839 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
1312adantr 481 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ+𝐵 ≤ 1) → 𝐵 ∈ ℝ)
147, 13syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
1514resqcld 13035 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) ∈ ℝ)
1611, 15resubcld 10458 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐴 − (𝐵↑2)) ∈ ℝ)
1716adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℝ)
1815, 11posdifd 10614 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐵↑2) < 𝐴 ↔ 0 < (𝐴 − (𝐵↑2))))
1918biimpa 501 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 < (𝐴 − (𝐵↑2)))
2017, 19elrpd 11869 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℝ+)
21 3re 11094 . . . . . . . 8 3 ∈ ℝ
22 3pos 11114 . . . . . . . 8 0 < 3
2321, 22elrpii 11835 . . . . . . 7 3 ∈ ℝ+
24 rpdivcl 11856 . . . . . . 7 (((𝐴 − (𝐵↑2)) ∈ ℝ+ ∧ 3 ∈ ℝ+) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ+)
2520, 23, 24sylancl 694 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ+)
269, 25rpaddcld 11887 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ+)
2714adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℝ)
2827recnd 10068 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐵 ∈ ℂ)
29 3nn 11186 . . . . . . . . . . 11 3 ∈ ℕ
30 nndivre 11056 . . . . . . . . . . 11 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 3 ∈ ℕ) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3116, 29, 30sylancl 694 . . . . . . . . . 10 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3231adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ)
3332recnd 10068 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ)
34 binom2 12979 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)))
3528, 33, 34syl2anc 693 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)))
3615adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵↑2) ∈ ℝ)
3736recnd 10068 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵↑2) ∈ ℂ)
38 2re 11090 . . . . . . . . . 10 2 ∈ ℝ
3927, 32remulcld 10070 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 · ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
40 remulcl 10021 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (𝐵 · ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℝ)
4138, 39, 40sylancr 695 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℝ)
4241recnd 10068 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) ∈ ℂ)
4332resqcld 13035 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) ∈ ℝ)
4443recnd 10068 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) ∈ ℂ)
4537, 42, 44addassd 10062 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐵↑2) + (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3)))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))))
4635, 45eqtrd 2656 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) = ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))))
47 2cn 11091 . . . . . . . . . . . . 13 2 ∈ ℂ
48 mulass 10024 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
4947, 48mp3an1 1411 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℂ) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
5028, 33, 49syl2anc 693 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) = (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))))
5150eqcomd 2628 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) = ((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)))
5233sqvald 13005 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3)↑2) = (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3)))
5351, 52oveq12d 6668 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = (((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) + (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3))))
54 remulcl 10021 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (2 · 𝐵) ∈ ℝ)
5538, 27, 54sylancr 695 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ∈ ℝ)
5655recnd 10068 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ∈ ℂ)
5756, 33, 33adddird 10065 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) = (((2 · 𝐵) · ((𝐴 − (𝐵↑2)) / 3)) + (((𝐴 − (𝐵↑2)) / 3) · ((𝐴 − (𝐵↑2)) / 3))))
5853, 57eqtr4d 2659 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) = (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)))
597simprd 479 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ≤ 1)
60 2pos 11112 . . . . . . . . . . . . . . . . 17 0 < 2
61 1re 10039 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
62 lemul2 10876 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐵 ≤ 1 ↔ (2 · 𝐵) ≤ (2 · 1)))
6361, 62mp3an2 1412 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐵 ≤ 1 ↔ (2 · 𝐵) ≤ (2 · 1)))
6438, 60, 63mpanr12 721 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℝ → (𝐵 ≤ 1 ↔ (2 · 𝐵) ≤ (2 · 1)))
6514, 64syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ≤ 1 ↔ (2 · 𝐵) ≤ (2 · 1)))
6659, 65mpbid 222 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (2 · 𝐵) ≤ (2 · 1))
6766adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ≤ (2 · 1))
68 2t1e2 11176 . . . . . . . . . . . . 13 (2 · 1) = 2
6967, 68syl6breq 4694 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (2 · 𝐵) ≤ 2)
7011adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ∈ ℝ)
7161a1i 11 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 1 ∈ ℝ)
7227sqge0d 13036 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 ≤ (𝐵↑2))
7370, 36addge01d 10615 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (0 ≤ (𝐵↑2) ↔ 𝐴 ≤ (𝐴 + (𝐵↑2))))
7472, 73mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ≤ (𝐴 + (𝐵↑2)))
7570, 36, 70lesubaddd 10624 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) ≤ 𝐴𝐴 ≤ (𝐴 + (𝐵↑2))))
7674, 75mpbird 247 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 𝐴)
77 simplr 792 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 𝐴 ≤ 1)
7817, 70, 71, 76, 77letrd 10194 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 1)
79 1le3 11244 . . . . . . . . . . . . . . . 16 1 ≤ 3
80 letr 10131 . . . . . . . . . . . . . . . . . 18 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 3 ∈ ℝ) → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
8161, 21, 80mp3an23 1416 . . . . . . . . . . . . . . . . 17 ((𝐴 − (𝐵↑2)) ∈ ℝ → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
8217, 81syl 17 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) ≤ 1 ∧ 1 ≤ 3) → (𝐴 − (𝐵↑2)) ≤ 3))
8379, 82mpan2i 713 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) ≤ 1 → (𝐴 − (𝐵↑2)) ≤ 3))
8478, 83mpd 15 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ 3)
85 3t1e3 11178 . . . . . . . . . . . . . 14 (3 · 1) = 3
8684, 85syl6breqr 4695 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ≤ (3 · 1))
87 ledivmul 10899 . . . . . . . . . . . . . . . 16 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ 1 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8861, 87mp3an2 1412 . . . . . . . . . . . . . . 15 (((𝐴 − (𝐵↑2)) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
8921, 22, 88mpanr12 721 . . . . . . . . . . . . . 14 ((𝐴 − (𝐵↑2)) ∈ ℝ → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
9017, 89syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐴 − (𝐵↑2)) / 3) ≤ 1 ↔ (𝐴 − (𝐵↑2)) ≤ (3 · 1)))
9186, 90mpbird 247 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐴 − (𝐵↑2)) / 3) ≤ 1)
92 le2add 10510 . . . . . . . . . . . . . 14 ((((2 · 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ) ∧ (2 ∈ ℝ ∧ 1 ∈ ℝ)) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9338, 61, 92mpanr12 721 . . . . . . . . . . . . 13 (((2 · 𝐵) ∈ ℝ ∧ ((𝐴 − (𝐵↑2)) / 3) ∈ ℝ) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9455, 32, 93syl2anc 693 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) ≤ 2 ∧ ((𝐴 − (𝐵↑2)) / 3) ≤ 1) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1)))
9569, 91, 94mp2and 715 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ (2 + 1))
96 df-3 11080 . . . . . . . . . . 11 3 = (2 + 1)
9795, 96syl6breqr 4695 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ 3)
9855, 32readdcld 10069 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
9921a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 3 ∈ ℝ)
10098, 99, 25lemul1d 11915 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) ≤ 3 ↔ (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (3 · ((𝐴 − (𝐵↑2)) / 3))))
10197, 100mpbid 222 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (3 · ((𝐴 − (𝐵↑2)) / 3)))
10217recnd 10068 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐴 − (𝐵↑2)) ∈ ℂ)
103 3cn 11095 . . . . . . . . . . 11 3 ∈ ℂ
104 3ne0 11115 . . . . . . . . . . 11 3 ≠ 0
105 divcan2 10693 . . . . . . . . . . 11 (((𝐴 − (𝐵↑2)) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
106103, 104, 105mp3an23 1416 . . . . . . . . . 10 ((𝐴 − (𝐵↑2)) ∈ ℂ → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
107102, 106syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (3 · ((𝐴 − (𝐵↑2)) / 3)) = (𝐴 − (𝐵↑2)))
108101, 107breqtrd 4679 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((2 · 𝐵) + ((𝐴 − (𝐵↑2)) / 3)) · ((𝐴 − (𝐵↑2)) / 3)) ≤ (𝐴 − (𝐵↑2)))
10958, 108eqbrtrd 4675 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ≤ (𝐴 − (𝐵↑2)))
11041, 43readdcld 10069 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ∈ ℝ)
11136, 110, 70leaddsub2d 10629 . . . . . . 7 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))) ≤ 𝐴 ↔ ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2)) ≤ (𝐴 − (𝐵↑2))))
112109, 111mpbird 247 . . . . . 6 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵↑2) + ((2 · (𝐵 · ((𝐴 − (𝐵↑2)) / 3))) + (((𝐴 − (𝐵↑2)) / 3)↑2))) ≤ 𝐴)
11346, 112eqbrtrd 4675 . . . . 5 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴)
114 oveq1 6657 . . . . . . 7 (𝑦 = (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) → (𝑦↑2) = ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2))
115114breq1d 4663 . . . . . 6 (𝑦 = (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) → ((𝑦↑2) ≤ 𝐴 ↔ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴))
116 oveq1 6657 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥↑2) = (𝑦↑2))
117116breq1d 4663 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥↑2) ≤ 𝐴 ↔ (𝑦↑2) ≤ 𝐴))
118117cbvrabv 3199 . . . . . . 7 {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
1191, 118eqtri 2644 . . . . . 6 𝑆 = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
120115, 119elrab2 3366 . . . . 5 ((𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆 ↔ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ+ ∧ ((𝐵 + ((𝐴 − (𝐵↑2)) / 3))↑2) ≤ 𝐴))
12126, 113, 120sylanbrc 698 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆)
122 suprub 10984 . . . . 5 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ sup(𝑆, ℝ, < ))
123122, 2syl6breqr 4695 . . . 4 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧𝑆 𝑧𝑦) ∧ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ 𝑆) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
1246, 121, 123syl2anc 693 . . 3 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
12525rpgt0d 11875 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → 0 < ((𝐴 − (𝐵↑2)) / 3))
12631, 14ltaddposd 10611 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (0 < ((𝐴 − (𝐵↑2)) / 3) ↔ 𝐵 < (𝐵 + ((𝐴 − (𝐵↑2)) / 3))))
12714, 31readdcld 10069 . . . . . . 7 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ∈ ℝ)
12814, 127ltnled 10184 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 < (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ↔ ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵))
129126, 128bitrd 268 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (0 < ((𝐴 − (𝐵↑2)) / 3) ↔ ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵))
130129biimpa 501 . . . 4 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ 0 < ((𝐴 − (𝐵↑2)) / 3)) → ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
131125, 130syldan 487 . . 3 (((𝐴 ∈ ℝ+𝐴 ≤ 1) ∧ (𝐵↑2) < 𝐴) → ¬ (𝐵 + ((𝐴 − (𝐵↑2)) / 3)) ≤ 𝐵)
132124, 131pm2.65da 600 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ¬ (𝐵↑2) < 𝐴)
13315, 11eqleltd 10181 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝐵↑2) = 𝐴 ↔ ((𝐵↑2) ≤ 𝐴 ∧ ¬ (𝐵↑2) < 𝐴)))
1344, 132, 133mpbir2and 957 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  {crab 2916  wss 3574  c0 3915   class class class wbr 4653  (class class class)co 6650  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  +crp 11832  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861
This theorem is referenced by:  01sqrex  13990
  Copyright terms: Public domain W3C validator