| Step | Hyp | Ref
| Expression |
| 1 | | df-asin 24592 |
. . . . 5
⊢ arcsin =
(𝑥 ∈ ℂ ↦
(-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) |
| 2 | 1 | reseq1i 5392 |
. . . 4
⊢ (arcsin
↾ 𝐷) = ((𝑥 ∈ ℂ ↦ (-i
· (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) ↾ 𝐷) |
| 3 | | dvasin.d |
. . . . . 6
⊢ 𝐷 = (ℂ ∖
((-∞(,]-1) ∪ (1[,)+∞))) |
| 4 | | difss 3737 |
. . . . . 6
⊢ (ℂ
∖ ((-∞(,]-1) ∪ (1[,)+∞))) ⊆
ℂ |
| 5 | 3, 4 | eqsstri 3635 |
. . . . 5
⊢ 𝐷 ⊆
ℂ |
| 6 | | resmpt 5449 |
. . . . 5
⊢ (𝐷 ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (-i
· (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (-i · (log‘((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))))))) |
| 7 | 5, 6 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ ℂ ↦ (-i
· (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) ↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (-i · (log‘((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))))) |
| 8 | 2, 7 | eqtri 2644 |
. . 3
⊢ (arcsin
↾ 𝐷) = (𝑥 ∈ 𝐷 ↦ (-i · (log‘((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))))) |
| 9 | 8 | oveq2i 6661 |
. 2
⊢ (ℂ
D (arcsin ↾ 𝐷)) =
(ℂ D (𝑥 ∈ 𝐷 ↦ (-i ·
(log‘((i · 𝑥)
+ (√‘(1 − (𝑥↑2)))))))) |
| 10 | | cnelprrecn 10029 |
. . . . 5
⊢ ℂ
∈ {ℝ, ℂ} |
| 11 | 10 | a1i 11 |
. . . 4
⊢ (⊤
→ ℂ ∈ {ℝ, ℂ}) |
| 12 | 5 | sseli 3599 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ) |
| 13 | | ax-icn 9995 |
. . . . . . . . 9
⊢ i ∈
ℂ |
| 14 | | mulcl 10020 |
. . . . . . . . 9
⊢ ((i
∈ ℂ ∧ 𝑥
∈ ℂ) → (i · 𝑥) ∈ ℂ) |
| 15 | 13, 14 | mpan 706 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → (i
· 𝑥) ∈
ℂ) |
| 16 | | ax-1cn 9994 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 17 | | sqcl 12925 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℂ → (𝑥↑2) ∈
ℂ) |
| 18 | | subcl 10280 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ (𝑥↑2) ∈ ℂ) → (1 −
(𝑥↑2)) ∈
ℂ) |
| 19 | 16, 17, 18 | sylancr 695 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (1
− (𝑥↑2)) ∈
ℂ) |
| 20 | 19 | sqrtcld 14176 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ →
(√‘(1 − (𝑥↑2))) ∈ ℂ) |
| 21 | 15, 20 | addcld 10059 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℂ) |
| 22 | 12, 21 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∈
ℂ) |
| 23 | | asinlem 24595 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≠ 0) |
| 24 | 12, 23 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ≠
0) |
| 25 | 22, 24 | logcld 24317 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 → (log‘((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) ∈
ℂ) |
| 26 | 25 | adantl 482 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ 𝐷) →
(log‘((i · 𝑥)
+ (√‘(1 − (𝑥↑2))))) ∈ ℂ) |
| 27 | | ovexd 6680 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → (i /
(√‘(1 − (𝑥↑2)))) ∈ V) |
| 28 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ) → ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ) |
| 29 | | asinlem3 24598 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℂ → 0 ≤
(ℜ‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))) |
| 30 | | rere 13862 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ →
(ℜ‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))) = ((i ·
𝑥) + (√‘(1
− (𝑥↑2))))) |
| 31 | 30 | breq2d 4665 |
. . . . . . . . . . . . . . . . . 18
⊢ (((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ → (0 ≤
(ℜ‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))) ↔ 0 ≤ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))))) |
| 32 | 31 | biimpac 503 |
. . . . . . . . . . . . . . . . 17
⊢ ((0 ≤
(ℜ‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))) ∧ ((i ·
𝑥) + (√‘(1
− (𝑥↑2))))
∈ ℝ) → 0 ≤ ((i · 𝑥) + (√‘(1 − (𝑥↑2))))) |
| 33 | 29, 32 | sylan 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ) → 0 ≤ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))) |
| 34 | 23 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ) → ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≠ 0) |
| 35 | 28, 33, 34 | ne0gt0d 10174 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ) → 0 < ((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))) |
| 36 | | 0re 10040 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℝ |
| 37 | | ltnle 10117 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℝ ∧ ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∈ ℝ)
→ (0 < ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ↔ ¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0)) |
| 38 | 36, 37 | mpan 706 |
. . . . . . . . . . . . . . . 16
⊢ (((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ → (0 < ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ↔ ¬ ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) ≤
0)) |
| 39 | 38 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ) → (0 <
((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ↔ ¬ ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) ≤
0)) |
| 40 | 35, 39 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ) → ¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0) |
| 41 | 40 | ex 450 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → (((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ → ¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0)) |
| 42 | 12, 41 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐷 → (((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∈ ℝ
→ ¬ ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ≤
0)) |
| 43 | | imor 428 |
. . . . . . . . . . . 12
⊢ ((((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ → ¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0) ↔ (¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ ∨ ¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0)) |
| 44 | 42, 43 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 → (¬ ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) ∈
ℝ ∨ ¬ ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ≤
0)) |
| 45 | 44 | orcomd 403 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → (¬ ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) ≤ 0 ∨
¬ ((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ)) |
| 46 | 45 | olcd 408 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → (¬ -∞ < ((i ·
𝑥) + (√‘(1
− (𝑥↑2)))) ∨
(¬ ((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0 ∨ ¬ ((i ·
𝑥) + (√‘(1
− (𝑥↑2))))
∈ ℝ))) |
| 47 | | 3ianor 1055 |
. . . . . . . . . . 11
⊢ (¬
(((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ ∧ -∞
< ((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ∧ ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) ≤ 0)
↔ (¬ ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∈ ℝ ∨
¬ -∞ < ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∨ ¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0)) |
| 48 | | 3orrot 1044 |
. . . . . . . . . . 11
⊢ ((¬
((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ ∨ ¬
-∞ < ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∨ ¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0) ↔ (¬ -∞
< ((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ∨ ¬ ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) ≤ 0 ∨
¬ ((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ)) |
| 49 | | 3orass 1040 |
. . . . . . . . . . 11
⊢ ((¬
-∞ < ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∨ ¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0 ∨ ¬ ((i ·
𝑥) + (√‘(1
− (𝑥↑2))))
∈ ℝ) ↔ (¬ -∞ < ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∨ (¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0 ∨ ¬ ((i ·
𝑥) + (√‘(1
− (𝑥↑2))))
∈ ℝ))) |
| 50 | 47, 48, 49 | 3bitrri 287 |
. . . . . . . . . 10
⊢ ((¬
-∞ < ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∨ (¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0 ∨ ¬ ((i ·
𝑥) + (√‘(1
− (𝑥↑2))))
∈ ℝ)) ↔ ¬ (((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∈ ℝ ∧
-∞ < ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∧ ((i ·
𝑥) + (√‘(1
− (𝑥↑2)))) ≤
0)) |
| 51 | | mnfxr 10096 |
. . . . . . . . . . 11
⊢ -∞
∈ ℝ* |
| 52 | | elioc2 12236 |
. . . . . . . . . . 11
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) →
(((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ (-∞(,]0) ↔ (((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ ∧ -∞
< ((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ∧ ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) ≤
0))) |
| 53 | 51, 36, 52 | mp2an 708 |
. . . . . . . . . 10
⊢ (((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ (-∞(,]0) ↔ (((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ ℝ ∧ -∞
< ((i · 𝑥) +
(√‘(1 − (𝑥↑2)))) ∧ ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) ≤
0)) |
| 54 | 50, 53 | xchbinxr 325 |
. . . . . . . . 9
⊢ ((¬
-∞ < ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∨ (¬ ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ≤ 0 ∨ ¬ ((i ·
𝑥) + (√‘(1
− (𝑥↑2))))
∈ ℝ)) ↔ ¬ ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∈
(-∞(,]0)) |
| 55 | 46, 54 | sylib 208 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → ¬ ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) ∈
(-∞(,]0)) |
| 56 | 22, 55 | eldifd 3585 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∈ (ℂ
∖ (-∞(,]0))) |
| 57 | 56 | adantl 482 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))) ∈ (ℂ ∖
(-∞(,]0))) |
| 58 | | ovexd 6680 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → ((i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2))))) / (√‘(1 −
(𝑥↑2)))) ∈
V) |
| 59 | | eldifi 3732 |
. . . . . . . 8
⊢ (𝑦 ∈ (ℂ ∖
(-∞(,]0)) → 𝑦
∈ ℂ) |
| 60 | | eldifn 3733 |
. . . . . . . . 9
⊢ (𝑦 ∈ (ℂ ∖
(-∞(,]0)) → ¬ 𝑦 ∈ (-∞(,]0)) |
| 61 | | 0xr 10086 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ* |
| 62 | | mnflt0 11959 |
. . . . . . . . . . . 12
⊢ -∞
< 0 |
| 63 | | ubioc1 12227 |
. . . . . . . . . . . 12
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*
∧ -∞ < 0) → 0 ∈ (-∞(,]0)) |
| 64 | 51, 61, 62, 63 | mp3an 1424 |
. . . . . . . . . . 11
⊢ 0 ∈
(-∞(,]0) |
| 65 | | eleq1 2689 |
. . . . . . . . . . 11
⊢ (𝑦 = 0 → (𝑦 ∈ (-∞(,]0) ↔ 0 ∈
(-∞(,]0))) |
| 66 | 64, 65 | mpbiri 248 |
. . . . . . . . . 10
⊢ (𝑦 = 0 → 𝑦 ∈ (-∞(,]0)) |
| 67 | 66 | necon3bi 2820 |
. . . . . . . . 9
⊢ (¬
𝑦 ∈ (-∞(,]0)
→ 𝑦 ≠
0) |
| 68 | 60, 67 | syl 17 |
. . . . . . . 8
⊢ (𝑦 ∈ (ℂ ∖
(-∞(,]0)) → 𝑦
≠ 0) |
| 69 | 59, 68 | logcld 24317 |
. . . . . . 7
⊢ (𝑦 ∈ (ℂ ∖
(-∞(,]0)) → (log‘𝑦) ∈ ℂ) |
| 70 | 69 | adantl 482 |
. . . . . 6
⊢
((⊤ ∧ 𝑦
∈ (ℂ ∖ (-∞(,]0))) → (log‘𝑦) ∈ ℂ) |
| 71 | | ovexd 6680 |
. . . . . 6
⊢
((⊤ ∧ 𝑦
∈ (ℂ ∖ (-∞(,]0))) → (1 / 𝑦) ∈ V) |
| 72 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → i ∈ ℂ) |
| 73 | 72, 12 | mulcld 10060 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → (i · 𝑥) ∈ ℂ) |
| 74 | 73 | adantl 482 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → (i
· 𝑥) ∈
ℂ) |
| 75 | 13 | a1i 11 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → i ∈
ℂ) |
| 76 | 12 | adantl 482 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → 𝑥 ∈
ℂ) |
| 77 | | 1cnd 10056 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → 1 ∈
ℂ) |
| 78 | | simpr 477 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ ℂ) → 𝑥
∈ ℂ) |
| 79 | | 1cnd 10056 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ ℂ) → 1 ∈ ℂ) |
| 80 | 11 | dvmptid 23720 |
. . . . . . . . . . 11
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ 𝑥)) =
(𝑥 ∈ ℂ ↦
1)) |
| 81 | 5 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ 𝐷 ⊆
ℂ) |
| 82 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 83 | 82 | cnfldtopon 22586 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 84 | 83 | toponunii 20721 |
. . . . . . . . . . . . . 14
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
| 85 | 84 | restid 16094 |
. . . . . . . . . . . . 13
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
| 86 | 83, 85 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
| 87 | 86 | eqcomi 2631 |
. . . . . . . . . . 11
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 88 | 82 | recld2 22617 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ (Clsd‘(TopOpen‘ℂfld)) |
| 89 | | neg1rr 11125 |
. . . . . . . . . . . . . . . . . 18
⊢ -1 ∈
ℝ |
| 90 | | iocmnfcld 22572 |
. . . . . . . . . . . . . . . . . 18
⊢ (-1
∈ ℝ → (-∞(,]-1) ∈ (Clsd‘(topGen‘ran
(,)))) |
| 91 | 89, 90 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(-∞(,]-1) ∈ (Clsd‘(topGen‘ran
(,))) |
| 92 | | 1re 10039 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℝ |
| 93 | | icopnfcld 22571 |
. . . . . . . . . . . . . . . . . 18
⊢ (1 ∈
ℝ → (1[,)+∞) ∈ (Clsd‘(topGen‘ran
(,)))) |
| 94 | 92, 93 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
(1[,)+∞) ∈ (Clsd‘(topGen‘ran
(,))) |
| 95 | | uncld 20845 |
. . . . . . . . . . . . . . . . 17
⊢
(((-∞(,]-1) ∈ (Clsd‘(topGen‘ran (,))) ∧
(1[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) →
((-∞(,]-1) ∪ (1[,)+∞)) ∈ (Clsd‘(topGen‘ran
(,)))) |
| 96 | 91, 94, 95 | mp2an 708 |
. . . . . . . . . . . . . . . 16
⊢
((-∞(,]-1) ∪ (1[,)+∞)) ∈
(Clsd‘(topGen‘ran (,))) |
| 97 | 82 | tgioo2 22606 |
. . . . . . . . . . . . . . . . 17
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 98 | 97 | fveq2i 6194 |
. . . . . . . . . . . . . . . 16
⊢
(Clsd‘(topGen‘ran (,))) =
(Clsd‘((TopOpen‘ℂfld) ↾t
ℝ)) |
| 99 | 96, 98 | eleqtri 2699 |
. . . . . . . . . . . . . . 15
⊢
((-∞(,]-1) ∪ (1[,)+∞)) ∈
(Clsd‘((TopOpen‘ℂfld) ↾t
ℝ)) |
| 100 | | restcldr 20978 |
. . . . . . . . . . . . . . 15
⊢ ((ℝ
∈ (Clsd‘(TopOpen‘ℂfld)) ∧
((-∞(,]-1) ∪ (1[,)+∞)) ∈
(Clsd‘((TopOpen‘ℂfld) ↾t
ℝ))) → ((-∞(,]-1) ∪ (1[,)+∞)) ∈
(Clsd‘(TopOpen‘ℂfld))) |
| 101 | 88, 99, 100 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢
((-∞(,]-1) ∪ (1[,)+∞)) ∈
(Clsd‘(TopOpen‘ℂfld)) |
| 102 | 84 | cldopn 20835 |
. . . . . . . . . . . . . 14
⊢
(((-∞(,]-1) ∪ (1[,)+∞)) ∈
(Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖
((-∞(,]-1) ∪ (1[,)+∞))) ∈
(TopOpen‘ℂfld)) |
| 103 | 101, 102 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (ℂ
∖ ((-∞(,]-1) ∪ (1[,)+∞))) ∈
(TopOpen‘ℂfld) |
| 104 | 3, 103 | eqeltri 2697 |
. . . . . . . . . . . 12
⊢ 𝐷 ∈
(TopOpen‘ℂfld) |
| 105 | 104 | a1i 11 |
. . . . . . . . . . 11
⊢ (⊤
→ 𝐷 ∈
(TopOpen‘ℂfld)) |
| 106 | 11, 78, 79, 80, 81, 87, 82, 105 | dvmptres 23726 |
. . . . . . . . . 10
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ 𝑥)) = (𝑥 ∈ 𝐷 ↦ 1)) |
| 107 | 13 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ i ∈ ℂ) |
| 108 | 11, 76, 77, 106, 107 | dvmptcmul 23727 |
. . . . . . . . 9
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ (i · 𝑥))) = (𝑥 ∈ 𝐷 ↦ (i · 1))) |
| 109 | 13 | mulid1i 10042 |
. . . . . . . . . 10
⊢ (i
· 1) = i |
| 110 | 109 | mpteq2i 4741 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 ↦ (i · 1)) = (𝑥 ∈ 𝐷 ↦ i) |
| 111 | 108, 110 | syl6eq 2672 |
. . . . . . . 8
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ (i · 𝑥))) = (𝑥 ∈ 𝐷 ↦ i)) |
| 112 | 12 | sqcld 13006 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 → (𝑥↑2) ∈ ℂ) |
| 113 | 16, 112, 18 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → (1 − (𝑥↑2)) ∈ ℂ) |
| 114 | 113 | sqrtcld 14176 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → (√‘(1 − (𝑥↑2))) ∈
ℂ) |
| 115 | 114 | adantl 482 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝐷) →
(√‘(1 − (𝑥↑2))) ∈ ℂ) |
| 116 | | ovexd 6680 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → (-𝑥 / (√‘(1 −
(𝑥↑2)))) ∈
V) |
| 117 | | elin 3796 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝐷 ∩ ℝ) ↔ (𝑥 ∈ 𝐷 ∧ 𝑥 ∈ ℝ)) |
| 118 | 3 | asindmre 33495 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷 ∩ ℝ) =
(-1(,)1) |
| 119 | 118 | eqimssi 3659 |
. . . . . . . . . . . . . . . 16
⊢ (𝐷 ∩ ℝ) ⊆
(-1(,)1) |
| 120 | 119 | sseli 3599 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝐷 ∩ ℝ) → 𝑥 ∈ (-1(,)1)) |
| 121 | 117, 120 | sylbir 225 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ (-1(,)1)) |
| 122 | | incom 3805 |
. . . . . . . . . . . . . . . 16
⊢
((0(,)+∞) ∩ (-∞(,]0)) = ((-∞(,]0) ∩
(0(,)+∞)) |
| 123 | | pnfxr 10092 |
. . . . . . . . . . . . . . . . 17
⊢ +∞
∈ ℝ* |
| 124 | | df-ioc 12180 |
. . . . . . . . . . . . . . . . . 18
⊢ (,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
| 125 | | df-ioo 12179 |
. . . . . . . . . . . . . . . . . 18
⊢ (,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| 126 | | xrltnle 10105 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (0 <
𝑤 ↔ ¬ 𝑤 ≤ 0)) |
| 127 | 124, 125,
126 | ixxdisj 12190 |
. . . . . . . . . . . . . . . . 17
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*
∧ +∞ ∈ ℝ*) → ((-∞(,]0) ∩
(0(,)+∞)) = ∅) |
| 128 | 51, 61, 123, 127 | mp3an 1424 |
. . . . . . . . . . . . . . . 16
⊢
((-∞(,]0) ∩ (0(,)+∞)) = ∅ |
| 129 | 122, 128 | eqtri 2644 |
. . . . . . . . . . . . . . 15
⊢
((0(,)+∞) ∩ (-∞(,]0)) = ∅ |
| 130 | | elioore 12205 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (-1(,)1) → 𝑥 ∈
ℝ) |
| 131 | 130 | resqcld 13035 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (-1(,)1) → (𝑥↑2) ∈
ℝ) |
| 132 | | resubcl 10345 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℝ ∧ (𝑥↑2) ∈ ℝ) → (1 −
(𝑥↑2)) ∈
ℝ) |
| 133 | 92, 131, 132 | sylancr 695 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (-1(,)1) → (1
− (𝑥↑2)) ∈
ℝ) |
| 134 | 89 | rexri 10097 |
. . . . . . . . . . . . . . . . . . 19
⊢ -1 ∈
ℝ* |
| 135 | 92 | rexri 10097 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℝ* |
| 136 | | elioo2 12216 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((-1
∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (-1(,)1) ↔ (𝑥 ∈ ℝ ∧ -1 <
𝑥 ∧ 𝑥 < 1))) |
| 137 | 134, 135,
136 | mp2an 708 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (-1(,)1) ↔ (𝑥 ∈ ℝ ∧ -1 <
𝑥 ∧ 𝑥 < 1)) |
| 138 | | recn 10026 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
| 139 | 138 | abscld 14175 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ →
(abs‘𝑥) ∈
ℝ) |
| 140 | 138 | absge0d 14183 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ → 0 ≤
(abs‘𝑥)) |
| 141 | | 0le1 10551 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ≤
1 |
| 142 | | lt2sq 12937 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((abs‘𝑥)
∈ ℝ ∧ 0 ≤ (abs‘𝑥)) ∧ (1 ∈ ℝ ∧ 0 ≤ 1))
→ ((abs‘𝑥) <
1 ↔ ((abs‘𝑥)↑2) < (1↑2))) |
| 143 | 92, 141, 142 | mpanr12 721 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((abs‘𝑥)
∈ ℝ ∧ 0 ≤ (abs‘𝑥)) → ((abs‘𝑥) < 1 ↔ ((abs‘𝑥)↑2) <
(1↑2))) |
| 144 | 139, 140,
143 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ →
((abs‘𝑥) < 1
↔ ((abs‘𝑥)↑2) < (1↑2))) |
| 145 | | abslt 14054 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ ℝ ∧ 1 ∈
ℝ) → ((abs‘𝑥) < 1 ↔ (-1 < 𝑥 ∧ 𝑥 < 1))) |
| 146 | 92, 145 | mpan2 707 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ →
((abs‘𝑥) < 1
↔ (-1 < 𝑥 ∧
𝑥 <
1))) |
| 147 | | absresq 14042 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ →
((abs‘𝑥)↑2) =
(𝑥↑2)) |
| 148 | | sq1 12958 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1↑2) = 1 |
| 149 | 148 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ →
(1↑2) = 1) |
| 150 | 147, 149 | breq12d 4666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ →
(((abs‘𝑥)↑2)
< (1↑2) ↔ (𝑥↑2) < 1)) |
| 151 | | resqcl 12931 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 ∈ ℝ → (𝑥↑2) ∈
ℝ) |
| 152 | | posdif 10521 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥↑2) ∈ ℝ ∧ 1
∈ ℝ) → ((𝑥↑2) < 1 ↔ 0 < (1 −
(𝑥↑2)))) |
| 153 | 151, 92, 152 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ ℝ → ((𝑥↑2) < 1 ↔ 0 < (1
− (𝑥↑2)))) |
| 154 | 150, 153 | bitrd 268 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ ℝ →
(((abs‘𝑥)↑2)
< (1↑2) ↔ 0 < (1 − (𝑥↑2)))) |
| 155 | 144, 146,
154 | 3bitr3d 298 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ → ((-1 <
𝑥 ∧ 𝑥 < 1) ↔ 0 < (1 − (𝑥↑2)))) |
| 156 | 155 | biimpd 219 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℝ → ((-1 <
𝑥 ∧ 𝑥 < 1) → 0 < (1 − (𝑥↑2)))) |
| 157 | 156 | 3impib 1262 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ -1 <
𝑥 ∧ 𝑥 < 1) → 0 < (1 − (𝑥↑2))) |
| 158 | 137, 157 | sylbi 207 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (-1(,)1) → 0 <
(1 − (𝑥↑2))) |
| 159 | 133, 158 | elrpd 11869 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (-1(,)1) → (1
− (𝑥↑2)) ∈
ℝ+) |
| 160 | | ioorp 12251 |
. . . . . . . . . . . . . . . 16
⊢
(0(,)+∞) = ℝ+ |
| 161 | 159, 160 | syl6eleqr 2712 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (-1(,)1) → (1
− (𝑥↑2)) ∈
(0(,)+∞)) |
| 162 | | disjel 4023 |
. . . . . . . . . . . . . . 15
⊢
((((0(,)+∞) ∩ (-∞(,]0)) = ∅ ∧ (1 −
(𝑥↑2)) ∈
(0(,)+∞)) → ¬ (1 − (𝑥↑2)) ∈
(-∞(,]0)) |
| 163 | 129, 161,
162 | sylancr 695 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (-1(,)1) → ¬ (1
− (𝑥↑2)) ∈
(-∞(,]0)) |
| 164 | 121, 163 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑥 ∈ ℝ) → ¬ (1 −
(𝑥↑2)) ∈
(-∞(,]0)) |
| 165 | | elioc2 12236 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1
− (𝑥↑2)) ∈
(-∞(,]0) ↔ ((1 − (𝑥↑2)) ∈ ℝ ∧ -∞ <
(1 − (𝑥↑2))
∧ (1 − (𝑥↑2)) ≤ 0))) |
| 166 | 51, 36, 165 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1
− (𝑥↑2)) ∈
(-∞(,]0) ↔ ((1 − (𝑥↑2)) ∈ ℝ ∧ -∞ <
(1 − (𝑥↑2))
∧ (1 − (𝑥↑2)) ≤ 0)) |
| 167 | 166 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((1
− (𝑥↑2)) ∈
(-∞(,]0) → ((1 − (𝑥↑2)) ∈ ℝ ∧ -∞ <
(1 − (𝑥↑2))
∧ (1 − (𝑥↑2)) ≤ 0)) |
| 168 | 167 | simp1d 1073 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
− (𝑥↑2)) ∈
(-∞(,]0) → (1 − (𝑥↑2)) ∈ ℝ) |
| 169 | | resubcl 10345 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
∈ ℝ ∧ (1 − (𝑥↑2)) ∈ ℝ) → (1 −
(1 − (𝑥↑2)))
∈ ℝ) |
| 170 | 92, 168, 169 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
− (𝑥↑2)) ∈
(-∞(,]0) → (1 − (1 − (𝑥↑2))) ∈ ℝ) |
| 171 | | nncan 10310 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1
∈ ℂ ∧ (𝑥↑2) ∈ ℂ) → (1 − (1
− (𝑥↑2))) =
(𝑥↑2)) |
| 172 | 16, 171 | mpan 706 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥↑2) ∈ ℂ →
(1 − (1 − (𝑥↑2))) = (𝑥↑2)) |
| 173 | 172 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥↑2) ∈ ℂ →
((1 − (1 − (𝑥↑2))) ∈ ℝ ↔ (𝑥↑2) ∈
ℝ)) |
| 174 | 173 | biimpa 501 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥↑2) ∈ ℂ ∧ (1
− (1 − (𝑥↑2))) ∈ ℝ) → (𝑥↑2) ∈
ℝ) |
| 175 | 170, 174 | sylan2 491 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥↑2) ∈ ℂ ∧ (1
− (𝑥↑2)) ∈
(-∞(,]0)) → (𝑥↑2) ∈ ℝ) |
| 176 | 168 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥↑2) ∈ ℂ ∧ (1
− (𝑥↑2)) ∈
(-∞(,]0)) → (1 − (𝑥↑2)) ∈ ℝ) |
| 177 | 167 | simp3d 1075 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1
− (𝑥↑2)) ∈
(-∞(,]0) → (1 − (𝑥↑2)) ≤ 0) |
| 178 | 177 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥↑2) ∈ ℂ ∧ (1
− (𝑥↑2)) ∈
(-∞(,]0)) → (1 − (𝑥↑2)) ≤ 0) |
| 179 | | letr 10131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((1
− (𝑥↑2)) ∈
ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → (((1 −
(𝑥↑2)) ≤ 0 ∧ 0
≤ 1) → (1 − (𝑥↑2)) ≤ 1)) |
| 180 | 36, 92, 179 | mp3an23 1416 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1
− (𝑥↑2)) ∈
ℝ → (((1 − (𝑥↑2)) ≤ 0 ∧ 0 ≤ 1) → (1
− (𝑥↑2)) ≤
1)) |
| 181 | 141, 180 | mpan2i 713 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((1
− (𝑥↑2)) ∈
ℝ → ((1 − (𝑥↑2)) ≤ 0 → (1 − (𝑥↑2)) ≤
1)) |
| 182 | 176, 178,
181 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥↑2) ∈ ℂ ∧ (1
− (𝑥↑2)) ∈
(-∞(,]0)) → (1 − (𝑥↑2)) ≤ 1) |
| 183 | | subge0 10541 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((1
∈ ℝ ∧ (1 − (𝑥↑2)) ∈ ℝ) → (0 ≤ (1
− (1 − (𝑥↑2))) ↔ (1 − (𝑥↑2)) ≤
1)) |
| 184 | 92, 176, 183 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥↑2) ∈ ℂ ∧ (1
− (𝑥↑2)) ∈
(-∞(,]0)) → (0 ≤ (1 − (1 − (𝑥↑2))) ↔ (1 − (𝑥↑2)) ≤
1)) |
| 185 | 182, 184 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥↑2) ∈ ℂ ∧ (1
− (𝑥↑2)) ∈
(-∞(,]0)) → 0 ≤ (1 − (1 − (𝑥↑2)))) |
| 186 | 172 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥↑2) ∈ ℂ ∧ (1
− (𝑥↑2)) ∈
(-∞(,]0)) → (1 − (1 − (𝑥↑2))) = (𝑥↑2)) |
| 187 | 185, 186 | breqtrd 4679 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥↑2) ∈ ℂ ∧ (1
− (𝑥↑2)) ∈
(-∞(,]0)) → 0 ≤ (𝑥↑2)) |
| 188 | 175, 187 | resqrtcld 14156 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥↑2) ∈ ℂ ∧ (1
− (𝑥↑2)) ∈
(-∞(,]0)) → (√‘(𝑥↑2)) ∈ ℝ) |
| 189 | 17, 188 | sylan 488 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ (1 −
(𝑥↑2)) ∈
(-∞(,]0)) → (√‘(𝑥↑2)) ∈ ℝ) |
| 190 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (√‘(𝑥↑2)) → (𝑥 ∈ ℝ ↔
(√‘(𝑥↑2))
∈ ℝ)) |
| 191 | 189, 190 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ (1 −
(𝑥↑2)) ∈
(-∞(,]0)) → (𝑥 =
(√‘(𝑥↑2))
→ 𝑥 ∈
ℝ)) |
| 192 | 189 | renegcld 10457 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ (1 −
(𝑥↑2)) ∈
(-∞(,]0)) → -(√‘(𝑥↑2)) ∈ ℝ) |
| 193 | | eleq1 2689 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = -(√‘(𝑥↑2)) → (𝑥 ∈ ℝ ↔
-(√‘(𝑥↑2))
∈ ℝ)) |
| 194 | 192, 193 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ (1 −
(𝑥↑2)) ∈
(-∞(,]0)) → (𝑥 =
-(√‘(𝑥↑2))
→ 𝑥 ∈
ℝ)) |
| 195 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥↑2) = (𝑥↑2) |
| 196 | | eqsqrtor 14106 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℂ ∧ (𝑥↑2) ∈ ℂ) →
((𝑥↑2) = (𝑥↑2) ↔ (𝑥 = (√‘(𝑥↑2)) ∨ 𝑥 = -(√‘(𝑥↑2))))) |
| 197 | 17, 196 | mpdan 702 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ → ((𝑥↑2) = (𝑥↑2) ↔ (𝑥 = (√‘(𝑥↑2)) ∨ 𝑥 = -(√‘(𝑥↑2))))) |
| 198 | 195, 197 | mpbii 223 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℂ → (𝑥 = (√‘(𝑥↑2)) ∨ 𝑥 = -(√‘(𝑥↑2)))) |
| 199 | 198 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ (1 −
(𝑥↑2)) ∈
(-∞(,]0)) → (𝑥 =
(√‘(𝑥↑2))
∨ 𝑥 =
-(√‘(𝑥↑2)))) |
| 200 | 191, 194,
199 | mpjaod 396 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ (1 −
(𝑥↑2)) ∈
(-∞(,]0)) → 𝑥
∈ ℝ) |
| 201 | 200 | stoic1a 1697 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℂ ∧ ¬
𝑥 ∈ ℝ) →
¬ (1 − (𝑥↑2)) ∈
(-∞(,]0)) |
| 202 | 12, 201 | sylan 488 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐷 ∧ ¬ 𝑥 ∈ ℝ) → ¬ (1 −
(𝑥↑2)) ∈
(-∞(,]0)) |
| 203 | 164, 202 | pm2.61dan 832 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐷 → ¬ (1 − (𝑥↑2)) ∈
(-∞(,]0)) |
| 204 | 113, 203 | eldifd 3585 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 → (1 − (𝑥↑2)) ∈ (ℂ ∖
(-∞(,]0))) |
| 205 | 204 | adantl 482 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → (1 −
(𝑥↑2)) ∈ (ℂ
∖ (-∞(,]0))) |
| 206 | | 2cnd 11093 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → 2 ∈
ℂ) |
| 207 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → 𝑥 ∈
ℂ) |
| 208 | 206, 207 | mulcld 10060 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → (2
· 𝑥) ∈
ℂ) |
| 209 | 208 | negcld 10379 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ → -(2
· 𝑥) ∈
ℂ) |
| 210 | 209 | adantl 482 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ ℂ) → -(2 · 𝑥) ∈ ℂ) |
| 211 | 12, 210 | sylan2 491 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ 𝐷) → -(2
· 𝑥) ∈
ℂ) |
| 212 | 59 | sqrtcld 14176 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (ℂ ∖
(-∞(,]0)) → (√‘𝑦) ∈ ℂ) |
| 213 | 212 | adantl 482 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑦
∈ (ℂ ∖ (-∞(,]0))) → (√‘𝑦) ∈
ℂ) |
| 214 | | ovexd 6680 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑦
∈ (ℂ ∖ (-∞(,]0))) → (1 / (2 ·
(√‘𝑦))) ∈
V) |
| 215 | 19 | adantl 482 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (1 − (𝑥↑2)) ∈ ℂ) |
| 216 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ ℂ) → 0 ∈ ℝ) |
| 217 | | 1cnd 10056 |
. . . . . . . . . . . . . 14
⊢ (⊤
→ 1 ∈ ℂ) |
| 218 | 11, 217 | dvmptc 23721 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ 1)) = (𝑥
∈ ℂ ↦ 0)) |
| 219 | 17 | adantl 482 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (𝑥↑2) ∈ ℂ) |
| 220 | | 2cn 11091 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℂ |
| 221 | | mulcl 10020 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℂ ∧ 𝑥
∈ ℂ) → (2 · 𝑥) ∈ ℂ) |
| 222 | 220, 221 | mpan 706 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → (2
· 𝑥) ∈
ℂ) |
| 223 | 222 | adantl 482 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (2 · 𝑥) ∈ ℂ) |
| 224 | | 2nn 11185 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℕ |
| 225 | | dvexp 23716 |
. . . . . . . . . . . . . . . 16
⊢ (2 ∈
ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 −
1))))) |
| 226 | 224, 225 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (ℂ
D (𝑥 ∈ ℂ ↦
(𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2
· (𝑥↑(2 −
1)))) |
| 227 | | 2m1e1 11135 |
. . . . . . . . . . . . . . . . . . 19
⊢ (2
− 1) = 1 |
| 228 | 227 | oveq2i 6661 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥↑(2 − 1)) = (𝑥↑1) |
| 229 | | exp1 12866 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥) |
| 230 | 228, 229 | syl5eq 2668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℂ → (𝑥↑(2 − 1)) = 𝑥) |
| 231 | 230 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ ℂ → (2
· (𝑥↑(2 −
1))) = (2 · 𝑥)) |
| 232 | 231 | mpteq2ia 4740 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ ↦ (2
· (𝑥↑(2 −
1)))) = (𝑥 ∈ ℂ
↦ (2 · 𝑥)) |
| 233 | 226, 232 | eqtri 2644 |
. . . . . . . . . . . . . 14
⊢ (ℂ
D (𝑥 ∈ ℂ ↦
(𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2
· 𝑥)) |
| 234 | 233 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥))) |
| 235 | 11, 79, 216, 218, 219, 223, 234 | dvmptsub 23730 |
. . . . . . . . . . . 12
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (1 − (𝑥↑2)))) = (𝑥 ∈ ℂ ↦ (0 − (2
· 𝑥)))) |
| 236 | | df-neg 10269 |
. . . . . . . . . . . . 13
⊢ -(2
· 𝑥) = (0 − (2
· 𝑥)) |
| 237 | 236 | mpteq2i 4741 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ ↦ -(2
· 𝑥)) = (𝑥 ∈ ℂ ↦ (0
− (2 · 𝑥))) |
| 238 | 235, 237 | syl6eqr 2674 |
. . . . . . . . . . 11
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (1 − (𝑥↑2)))) = (𝑥 ∈ ℂ ↦ -(2 · 𝑥))) |
| 239 | 11, 215, 210, 238, 81, 87, 82, 105 | dvmptres 23726 |
. . . . . . . . . 10
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ (1 − (𝑥↑2)))) = (𝑥 ∈ 𝐷 ↦ -(2 · 𝑥))) |
| 240 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (ℂ
∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0)) |
| 241 | 240 | dvcnsqrt 24485 |
. . . . . . . . . . 11
⊢ (ℂ
D (𝑦 ∈ (ℂ
∖ (-∞(,]0)) ↦ (√‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0))
↦ (1 / (2 · (√‘𝑦)))) |
| 242 | 241 | a1i 11 |
. . . . . . . . . 10
⊢ (⊤
→ (ℂ D (𝑦 ∈
(ℂ ∖ (-∞(,]0)) ↦ (√‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0))
↦ (1 / (2 · (√‘𝑦))))) |
| 243 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑦 = (1 − (𝑥↑2)) →
(√‘𝑦) =
(√‘(1 − (𝑥↑2)))) |
| 244 | 243 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑦 = (1 − (𝑥↑2)) → (2 ·
(√‘𝑦)) = (2
· (√‘(1 − (𝑥↑2))))) |
| 245 | 244 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑦 = (1 − (𝑥↑2)) → (1 / (2
· (√‘𝑦))) = (1 / (2 · (√‘(1
− (𝑥↑2)))))) |
| 246 | 11, 11, 205, 211, 213, 214, 239, 242, 243, 245 | dvmptco 23735 |
. . . . . . . . 9
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ (√‘(1
− (𝑥↑2))))) =
(𝑥 ∈ 𝐷 ↦ ((1 / (2 · (√‘(1
− (𝑥↑2)))))
· -(2 · 𝑥)))) |
| 247 | | mulneg2 10467 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ 𝑥
∈ ℂ) → (2 · -𝑥) = -(2 · 𝑥)) |
| 248 | 220, 12, 247 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐷 → (2 · -𝑥) = -(2 · 𝑥)) |
| 249 | 248 | oveq1d 6665 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 → ((2 · -𝑥) / (2 · (√‘(1 −
(𝑥↑2))))) = (-(2
· 𝑥) / (2 ·
(√‘(1 − (𝑥↑2)))))) |
| 250 | 12 | negcld 10379 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐷 → -𝑥 ∈ ℂ) |
| 251 | | eldifn 3733 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (ℂ ∖
((-∞(,]-1) ∪ (1[,)+∞))) → ¬ 𝑥 ∈ ((-∞(,]-1) ∪
(1[,)+∞))) |
| 252 | 251, 3 | eleq2s 2719 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐷 → ¬ 𝑥 ∈ ((-∞(,]-1) ∪
(1[,)+∞))) |
| 253 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = -1 → 𝑥 = -1) |
| 254 | | mnflt 11957 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (-1
∈ ℝ → -∞ < -1) |
| 255 | 89, 254 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ -∞
< -1 |
| 256 | | ubioc1 12227 |
. . . . . . . . . . . . . . . . . . 19
⊢
((-∞ ∈ ℝ* ∧ -1 ∈
ℝ* ∧ -∞ < -1) → -1 ∈
(-∞(,]-1)) |
| 257 | 51, 134, 255, 256 | mp3an 1424 |
. . . . . . . . . . . . . . . . . 18
⊢ -1 ∈
(-∞(,]-1) |
| 258 | 253, 257 | syl6eqel 2709 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = -1 → 𝑥 ∈ (-∞(,]-1)) |
| 259 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 1 → 𝑥 = 1) |
| 260 | | ltpnf 11954 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 ∈
ℝ → 1 < +∞) |
| 261 | 92, 260 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
+∞ |
| 262 | | lbico1 12228 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1
∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 1
< +∞) → 1 ∈ (1[,)+∞)) |
| 263 | 135, 123,
261, 262 | mp3an 1424 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
(1[,)+∞) |
| 264 | 259, 263 | syl6eqel 2709 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 1 → 𝑥 ∈ (1[,)+∞)) |
| 265 | 258, 264 | orim12i 538 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈
(1[,)+∞))) |
| 266 | 265 | orcoms 404 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → (𝑥 ∈ (-∞(,]-1) ∨ 𝑥 ∈
(1[,)+∞))) |
| 267 | | elun 3753 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ((-∞(,]-1) ∪
(1[,)+∞)) ↔ (𝑥
∈ (-∞(,]-1) ∨ 𝑥 ∈ (1[,)+∞))) |
| 268 | 266, 267 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 1 ∨ 𝑥 = -1) → 𝑥 ∈ ((-∞(,]-1) ∪
(1[,)+∞))) |
| 269 | 252, 268 | nsyl 135 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐷 → ¬ (𝑥 = 1 ∨ 𝑥 = -1)) |
| 270 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → 1 ∈
ℂ) |
| 271 | 17 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → (𝑥↑2) ∈ ℂ) |
| 272 | 19 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → (1 − (𝑥↑2)) ∈
ℂ) |
| 273 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → (√‘(1
− (𝑥↑2))) =
0) |
| 274 | 272, 273 | sqr00d 14180 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → (1 − (𝑥↑2)) = 0) |
| 275 | 270, 271,
274 | subeq0d 10400 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → 1 = (𝑥↑2)) |
| 276 | 148, 275 | syl5req 2669 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) = 0) → (𝑥↑2) = (1↑2)) |
| 277 | 276 | ex 450 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ →
((√‘(1 − (𝑥↑2))) = 0 → (𝑥↑2) = (1↑2))) |
| 278 | | sqeqor 12978 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑥↑2)
= (1↑2) ↔ (𝑥 = 1
∨ 𝑥 =
-1))) |
| 279 | 16, 278 | mpan2 707 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℂ → ((𝑥↑2) = (1↑2) ↔
(𝑥 = 1 ∨ 𝑥 = -1))) |
| 280 | 277, 279 | sylibd 229 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ →
((√‘(1 − (𝑥↑2))) = 0 → (𝑥 = 1 ∨ 𝑥 = -1))) |
| 281 | 280 | necon3bd 2808 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → (¬
(𝑥 = 1 ∨ 𝑥 = -1) → (√‘(1
− (𝑥↑2))) ≠
0)) |
| 282 | 12, 269, 281 | sylc 65 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐷 → (√‘(1 − (𝑥↑2))) ≠
0) |
| 283 | | 2cnne0 11242 |
. . . . . . . . . . . . 13
⊢ (2 ∈
ℂ ∧ 2 ≠ 0) |
| 284 | | divcan5 10727 |
. . . . . . . . . . . . 13
⊢ ((-𝑥 ∈ ℂ ∧
((√‘(1 − (𝑥↑2))) ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) ≠ 0) ∧ (2 ∈ ℂ
∧ 2 ≠ 0)) → ((2 · -𝑥) / (2 · (√‘(1 −
(𝑥↑2))))) = (-𝑥 / (√‘(1 −
(𝑥↑2))))) |
| 285 | 283, 284 | mp3an3 1413 |
. . . . . . . . . . . 12
⊢ ((-𝑥 ∈ ℂ ∧
((√‘(1 − (𝑥↑2))) ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) ≠ 0)) → ((2 ·
-𝑥) / (2 ·
(√‘(1 − (𝑥↑2))))) = (-𝑥 / (√‘(1 − (𝑥↑2))))) |
| 286 | 250, 114,
282, 285 | syl12anc 1324 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 → ((2 · -𝑥) / (2 · (√‘(1 −
(𝑥↑2))))) = (-𝑥 / (√‘(1 −
(𝑥↑2))))) |
| 287 | 220, 12, 221 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐷 → (2 · 𝑥) ∈ ℂ) |
| 288 | 287 | negcld 10379 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐷 → -(2 · 𝑥) ∈ ℂ) |
| 289 | | mulcl 10020 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℂ ∧ (√‘(1 − (𝑥↑2))) ∈ ℂ) → (2 ·
(√‘(1 − (𝑥↑2)))) ∈ ℂ) |
| 290 | 220, 114,
289 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐷 → (2 · (√‘(1
− (𝑥↑2))))
∈ ℂ) |
| 291 | | mulne0 10669 |
. . . . . . . . . . . . . 14
⊢ (((2
∈ ℂ ∧ 2 ≠ 0) ∧ ((√‘(1 − (𝑥↑2))) ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) ≠ 0)) → (2 ·
(√‘(1 − (𝑥↑2)))) ≠ 0) |
| 292 | 283, 291 | mpan 706 |
. . . . . . . . . . . . 13
⊢
(((√‘(1 − (𝑥↑2))) ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) ≠ 0) → (2 ·
(√‘(1 − (𝑥↑2)))) ≠ 0) |
| 293 | 114, 282,
292 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐷 → (2 · (√‘(1
− (𝑥↑2)))) ≠
0) |
| 294 | 288, 290,
293 | divrec2d 10805 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐷 → (-(2 · 𝑥) / (2 · (√‘(1 −
(𝑥↑2))))) = ((1 / (2
· (√‘(1 − (𝑥↑2))))) · -(2 · 𝑥))) |
| 295 | 249, 286,
294 | 3eqtr3rd 2665 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → ((1 / (2 · (√‘(1
− (𝑥↑2)))))
· -(2 · 𝑥)) =
(-𝑥 / (√‘(1
− (𝑥↑2))))) |
| 296 | 295 | mpteq2ia 4740 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 ↦ ((1 / (2 · (√‘(1
− (𝑥↑2)))))
· -(2 · 𝑥)))
= (𝑥 ∈ 𝐷 ↦ (-𝑥 / (√‘(1 − (𝑥↑2))))) |
| 297 | 246, 296 | syl6eq 2672 |
. . . . . . . 8
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ (√‘(1
− (𝑥↑2))))) =
(𝑥 ∈ 𝐷 ↦ (-𝑥 / (√‘(1 − (𝑥↑2)))))) |
| 298 | 11, 74, 75, 111, 115, 116, 297 | dvmptadd 23723 |
. . . . . . 7
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ ((i ·
𝑥) + (√‘(1
− (𝑥↑2)))))) =
(𝑥 ∈ 𝐷 ↦ (i + (-𝑥 / (√‘(1 − (𝑥↑2))))))) |
| 299 | | mulcl 10020 |
. . . . . . . . . . . 12
⊢ ((i
∈ ℂ ∧ (√‘(1 − (𝑥↑2))) ∈ ℂ) → (i ·
(√‘(1 − (𝑥↑2)))) ∈ ℂ) |
| 300 | 13, 20, 299 | sylancr 695 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ → (i
· (√‘(1 − (𝑥↑2)))) ∈ ℂ) |
| 301 | 12, 300 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → (i · (√‘(1
− (𝑥↑2))))
∈ ℂ) |
| 302 | 301, 250,
114, 282 | divdird 10839 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → (((i · (√‘(1
− (𝑥↑2)))) +
-𝑥) / (√‘(1
− (𝑥↑2)))) =
(((i · (√‘(1 − (𝑥↑2)))) / (√‘(1 −
(𝑥↑2)))) + (-𝑥 / (√‘(1 −
(𝑥↑2)))))) |
| 303 | | ixi 10656 |
. . . . . . . . . . . . . . . 16
⊢ (i
· i) = -1 |
| 304 | 303 | eqcomi 2631 |
. . . . . . . . . . . . . . 15
⊢ -1 = (i
· i) |
| 305 | 304 | oveq1i 6660 |
. . . . . . . . . . . . . 14
⊢ (-1
· 𝑥) = ((i ·
i) · 𝑥) |
| 306 | | mulm1 10471 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → (-1
· 𝑥) = -𝑥) |
| 307 | | mulass 10024 |
. . . . . . . . . . . . . . 15
⊢ ((i
∈ ℂ ∧ i ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((i · i)
· 𝑥) = (i ·
(i · 𝑥))) |
| 308 | 13, 13, 307 | mp3an12 1414 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℂ → ((i
· i) · 𝑥) =
(i · (i · 𝑥))) |
| 309 | 305, 306,
308 | 3eqtr3a 2680 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → -𝑥 = (i · (i · 𝑥))) |
| 310 | 309 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ → (-𝑥 + (i · (√‘(1
− (𝑥↑2))))) =
((i · (i · 𝑥)) + (i · (√‘(1 −
(𝑥↑2)))))) |
| 311 | | negcl 10281 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → -𝑥 ∈
ℂ) |
| 312 | 300, 311 | addcomd 10238 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ → ((i
· (√‘(1 − (𝑥↑2)))) + -𝑥) = (-𝑥 + (i · (√‘(1 −
(𝑥↑2)))))) |
| 313 | 13 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℂ → i ∈
ℂ) |
| 314 | 313, 15, 20 | adddid 10064 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ → (i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2))))) = ((i · (i · 𝑥)) + (i ·
(√‘(1 − (𝑥↑2)))))) |
| 315 | 310, 312,
314 | 3eqtr4d 2666 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℂ → ((i
· (√‘(1 − (𝑥↑2)))) + -𝑥) = (i · ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))))) |
| 316 | 12, 315 | syl 17 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → ((i · (√‘(1
− (𝑥↑2)))) +
-𝑥) = (i · ((i
· 𝑥) +
(√‘(1 − (𝑥↑2)))))) |
| 317 | 316 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → (((i · (√‘(1
− (𝑥↑2)))) +
-𝑥) / (√‘(1
− (𝑥↑2)))) = ((i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2))))) / (√‘(1 −
(𝑥↑2))))) |
| 318 | 72, 114, 282 | divcan4d 10807 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐷 → ((i · (√‘(1
− (𝑥↑2)))) /
(√‘(1 − (𝑥↑2)))) = i) |
| 319 | 318 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → (((i · (√‘(1
− (𝑥↑2)))) /
(√‘(1 − (𝑥↑2)))) + (-𝑥 / (√‘(1 − (𝑥↑2))))) = (i + (-𝑥 / (√‘(1 −
(𝑥↑2)))))) |
| 320 | 302, 317,
319 | 3eqtr3rd 2665 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (i + (-𝑥 / (√‘(1 − (𝑥↑2))))) = ((i · ((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))) / (√‘(1 −
(𝑥↑2))))) |
| 321 | 320 | mpteq2ia 4740 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 ↦ (i + (-𝑥 / (√‘(1 − (𝑥↑2)))))) = (𝑥 ∈ 𝐷 ↦ ((i · ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) /
(√‘(1 − (𝑥↑2))))) |
| 322 | 298, 321 | syl6eq 2672 |
. . . . . 6
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ ((i ·
𝑥) + (√‘(1
− (𝑥↑2)))))) =
(𝑥 ∈ 𝐷 ↦ ((i · ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) /
(√‘(1 − (𝑥↑2)))))) |
| 323 | 240 | dvlog 24397 |
. . . . . . 7
⊢ (ℂ
D (log ↾ (ℂ ∖ (-∞(,]0)))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0))
↦ (1 / 𝑦)) |
| 324 | | logf1o 24311 |
. . . . . . . . . 10
⊢
log:(ℂ ∖ {0})–1-1-onto→ran
log |
| 325 | | f1of 6137 |
. . . . . . . . . 10
⊢
(log:(ℂ ∖ {0})–1-1-onto→ran
log → log:(ℂ ∖ {0})⟶ran log) |
| 326 | 324, 325 | mp1i 13 |
. . . . . . . . 9
⊢ (⊤
→ log:(ℂ ∖ {0})⟶ran log) |
| 327 | | snssi 4339 |
. . . . . . . . . . 11
⊢ (0 ∈
(-∞(,]0) → {0} ⊆ (-∞(,]0)) |
| 328 | 64, 327 | ax-mp 5 |
. . . . . . . . . 10
⊢ {0}
⊆ (-∞(,]0) |
| 329 | | sscon 3744 |
. . . . . . . . . 10
⊢ ({0}
⊆ (-∞(,]0) → (ℂ ∖ (-∞(,]0)) ⊆ (ℂ
∖ {0})) |
| 330 | 328, 329 | mp1i 13 |
. . . . . . . . 9
⊢ (⊤
→ (ℂ ∖ (-∞(,]0)) ⊆ (ℂ ∖
{0})) |
| 331 | 326, 330 | feqresmpt 6250 |
. . . . . . . 8
⊢ (⊤
→ (log ↾ (ℂ ∖ (-∞(,]0))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0))
↦ (log‘𝑦))) |
| 332 | 331 | oveq2d 6666 |
. . . . . . 7
⊢ (⊤
→ (ℂ D (log ↾ (ℂ ∖ (-∞(,]0)))) = (ℂ D
(𝑦 ∈ (ℂ ∖
(-∞(,]0)) ↦ (log‘𝑦)))) |
| 333 | 323, 332 | syl5reqr 2671 |
. . . . . 6
⊢ (⊤
→ (ℂ D (𝑦 ∈
(ℂ ∖ (-∞(,]0)) ↦ (log‘𝑦))) = (𝑦 ∈ (ℂ ∖ (-∞(,]0))
↦ (1 / 𝑦))) |
| 334 | | fveq2 6191 |
. . . . . 6
⊢ (𝑦 = ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) →
(log‘𝑦) =
(log‘((i · 𝑥)
+ (√‘(1 − (𝑥↑2)))))) |
| 335 | | oveq2 6658 |
. . . . . 6
⊢ (𝑦 = ((i · 𝑥) + (√‘(1 −
(𝑥↑2)))) → (1 /
𝑦) = (1 / ((i ·
𝑥) + (√‘(1
− (𝑥↑2)))))) |
| 336 | 11, 11, 57, 58, 70, 71, 322, 333, 334, 335 | dvmptco 23735 |
. . . . 5
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ (log‘((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))))) = (𝑥 ∈ 𝐷 ↦ ((1 / ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) · ((i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2))))) / (√‘(1 −
(𝑥↑2))))))) |
| 337 | 22, 24 | reccld 10794 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (1 / ((i · 𝑥) + (√‘(1 − (𝑥↑2))))) ∈
ℂ) |
| 338 | | mulcl 10020 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ ((i · 𝑥) + (√‘(1 − (𝑥↑2)))) ∈ ℂ)
→ (i · ((i · 𝑥) + (√‘(1 − (𝑥↑2))))) ∈
ℂ) |
| 339 | 13, 21, 338 | sylancr 695 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℂ → (i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2))))) ∈ ℂ) |
| 340 | 12, 339 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (i · ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) ∈
ℂ) |
| 341 | 337, 340,
114, 282 | divassd 10836 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (((1 / ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) · (i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2)))))) / (√‘(1 −
(𝑥↑2)))) = ((1 / ((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))) · ((i · ((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))) / (√‘(1 −
(𝑥↑2)))))) |
| 342 | 340, 22, 24 | divrec2d 10805 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → ((i · ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) / ((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))) = ((1 / ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) · (i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2))))))) |
| 343 | 72, 22, 24 | divcan4d 10807 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → ((i · ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) / ((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))) = i) |
| 344 | 342, 343 | eqtr3d 2658 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → ((1 / ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) · (i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2)))))) = i) |
| 345 | 344 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → (((1 / ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) · (i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2)))))) / (√‘(1 −
(𝑥↑2)))) = (i /
(√‘(1 − (𝑥↑2))))) |
| 346 | 341, 345 | eqtr3d 2658 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 → ((1 / ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) · ((i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2))))) / (√‘(1 −
(𝑥↑2))))) = (i /
(√‘(1 − (𝑥↑2))))) |
| 347 | 346 | mpteq2ia 4740 |
. . . . 5
⊢ (𝑥 ∈ 𝐷 ↦ ((1 / ((i · 𝑥) + (√‘(1 −
(𝑥↑2))))) · ((i
· ((i · 𝑥) +
(√‘(1 − (𝑥↑2))))) / (√‘(1 −
(𝑥↑2)))))) = (𝑥 ∈ 𝐷 ↦ (i / (√‘(1 −
(𝑥↑2))))) |
| 348 | 336, 347 | syl6eq 2672 |
. . . 4
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ (log‘((i
· 𝑥) +
(√‘(1 − (𝑥↑2))))))) = (𝑥 ∈ 𝐷 ↦ (i / (√‘(1 −
(𝑥↑2)))))) |
| 349 | | negicn 10282 |
. . . . 5
⊢ -i ∈
ℂ |
| 350 | 349 | a1i 11 |
. . . 4
⊢ (⊤
→ -i ∈ ℂ) |
| 351 | 11, 26, 27, 348, 350 | dvmptcmul 23727 |
. . 3
⊢ (⊤
→ (ℂ D (𝑥 ∈
𝐷 ↦ (-i ·
(log‘((i · 𝑥)
+ (√‘(1 − (𝑥↑2)))))))) = (𝑥 ∈ 𝐷 ↦ (-i · (i / (√‘(1
− (𝑥↑2))))))) |
| 352 | 351 | trud 1493 |
. 2
⊢ (ℂ
D (𝑥 ∈ 𝐷 ↦ (-i ·
(log‘((i · 𝑥)
+ (√‘(1 − (𝑥↑2)))))))) = (𝑥 ∈ 𝐷 ↦ (-i · (i / (√‘(1
− (𝑥↑2)))))) |
| 353 | 13, 13 | mulneg1i 10476 |
. . . . . 6
⊢ (-i
· i) = -(i · i) |
| 354 | 303 | negeqi 10274 |
. . . . . 6
⊢ -(i
· i) = --1 |
| 355 | | negneg1e1 11128 |
. . . . . 6
⊢ --1 =
1 |
| 356 | 353, 354,
355 | 3eqtri 2648 |
. . . . 5
⊢ (-i
· i) = 1 |
| 357 | 356 | oveq1i 6660 |
. . . 4
⊢ ((-i
· i) / (√‘(1 − (𝑥↑2)))) = (1 / (√‘(1 −
(𝑥↑2)))) |
| 358 | | divass 10703 |
. . . . . 6
⊢ ((-i
∈ ℂ ∧ i ∈ ℂ ∧ ((√‘(1 − (𝑥↑2))) ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) ≠ 0)) → ((-i · i) /
(√‘(1 − (𝑥↑2)))) = (-i · (i /
(√‘(1 − (𝑥↑2)))))) |
| 359 | 349, 13, 358 | mp3an12 1414 |
. . . . 5
⊢
(((√‘(1 − (𝑥↑2))) ∈ ℂ ∧
(√‘(1 − (𝑥↑2))) ≠ 0) → ((-i · i) /
(√‘(1 − (𝑥↑2)))) = (-i · (i /
(√‘(1 − (𝑥↑2)))))) |
| 360 | 114, 282,
359 | syl2anc 693 |
. . . 4
⊢ (𝑥 ∈ 𝐷 → ((-i · i) / (√‘(1
− (𝑥↑2)))) = (-i
· (i / (√‘(1 − (𝑥↑2)))))) |
| 361 | 357, 360 | syl5reqr 2671 |
. . 3
⊢ (𝑥 ∈ 𝐷 → (-i · (i / (√‘(1
− (𝑥↑2))))) = (1
/ (√‘(1 − (𝑥↑2))))) |
| 362 | 361 | mpteq2ia 4740 |
. 2
⊢ (𝑥 ∈ 𝐷 ↦ (-i · (i / (√‘(1
− (𝑥↑2)))))) =
(𝑥 ∈ 𝐷 ↦ (1 / (√‘(1 −
(𝑥↑2))))) |
| 363 | 9, 352, 362 | 3eqtri 2648 |
1
⊢ (ℂ
D (arcsin ↾ 𝐷)) =
(𝑥 ∈ 𝐷 ↦ (1 / (√‘(1 −
(𝑥↑2))))) |