| Step | Hyp | Ref
| Expression |
| 1 | | aacllem.0 |
. 2
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 2 | | aacllem.1 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 3 | 2 | nn0red 11352 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 4 | 3 | ltp1d 10954 |
. . . . 5
⊢ (𝜑 → 𝑁 < (𝑁 + 1)) |
| 5 | | peano2nn0 11333 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 6 | 2, 5 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
| 7 | 6 | nn0red 11352 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈ ℝ) |
| 8 | 3, 7 | ltnled 10184 |
. . . . 5
⊢ (𝜑 → (𝑁 < (𝑁 + 1) ↔ ¬ (𝑁 + 1) ≤ 𝑁)) |
| 9 | 4, 8 | mpbid 222 |
. . . 4
⊢ (𝜑 → ¬ (𝑁 + 1) ≤ 𝑁) |
| 10 | | aacllem.3 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ) |
| 11 | 10 | 3expa 1265 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ) |
| 12 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (1...𝑁) ↦ 𝐶) = (𝑛 ∈ (1...𝑁) ↦ 𝐶) |
| 13 | 11, 12 | fmptd 6385 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶):(1...𝑁)⟶ℚ) |
| 14 | | qex 11800 |
. . . . . . . . . . 11
⊢ ℚ
∈ V |
| 15 | | ovex 6678 |
. . . . . . . . . . 11
⊢
(1...𝑁) ∈
V |
| 16 | 14, 15 | elmap 7886 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ (ℚ ↑𝑚
(1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ 𝐶):(1...𝑁)⟶ℚ) |
| 17 | 13, 16 | sylibr 224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ (ℚ ↑𝑚
(1...𝑁))) |
| 18 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) |
| 19 | 17, 18 | fmptd 6385 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)⟶(ℚ ↑𝑚
(1...𝑁))) |
| 20 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(ℂfld ↾s ℚ) =
(ℂfld ↾s ℚ) |
| 21 | 20 | qdrng 25309 |
. . . . . . . . . . 11
⊢
(ℂfld ↾s ℚ) ∈
DivRing |
| 22 | | drngring 18754 |
. . . . . . . . . . 11
⊢
((ℂfld ↾s ℚ) ∈ DivRing
→ (ℂfld ↾s ℚ) ∈
Ring) |
| 23 | 21, 22 | ax-mp 5 |
. . . . . . . . . 10
⊢
(ℂfld ↾s ℚ) ∈
Ring |
| 24 | | fzfi 12771 |
. . . . . . . . . 10
⊢
(1...𝑁) ∈
Fin |
| 25 | | eqid 2622 |
. . . . . . . . . . 11
⊢
((ℂfld ↾s ℚ) freeLMod (1...𝑁)) = ((ℂfld
↾s ℚ) freeLMod (1...𝑁)) |
| 26 | 25 | frlmlmod 20093 |
. . . . . . . . . 10
⊢
(((ℂfld ↾s ℚ) ∈ Ring ∧
(1...𝑁) ∈ Fin) →
((ℂfld ↾s ℚ) freeLMod (1...𝑁)) ∈ LMod) |
| 27 | 23, 24, 26 | mp2an 708 |
. . . . . . . . 9
⊢
((ℂfld ↾s ℚ) freeLMod (1...𝑁)) ∈ LMod |
| 28 | | fzfi 12771 |
. . . . . . . . 9
⊢
(0...𝑁) ∈
Fin |
| 29 | 20 | qrngbas 25308 |
. . . . . . . . . . . 12
⊢ ℚ =
(Base‘(ℂfld ↾s
ℚ)) |
| 30 | 25, 29 | frlmfibas 20105 |
. . . . . . . . . . 11
⊢
(((ℂfld ↾s ℚ) ∈ DivRing
∧ (1...𝑁) ∈ Fin)
→ (ℚ ↑𝑚 (1...𝑁)) = (Base‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))) |
| 31 | 21, 24, 30 | mp2an 708 |
. . . . . . . . . 10
⊢ (ℚ
↑𝑚 (1...𝑁)) = (Base‘((ℂfld
↾s ℚ) freeLMod (1...𝑁))) |
| 32 | 25 | frlmsca 20097 |
. . . . . . . . . . 11
⊢
(((ℂfld ↾s ℚ) ∈ DivRing
∧ (1...𝑁) ∈ Fin)
→ (ℂfld ↾s ℚ) =
(Scalar‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) |
| 33 | 21, 24, 32 | mp2an 708 |
. . . . . . . . . 10
⊢
(ℂfld ↾s ℚ) =
(Scalar‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) |
| 34 | | eqid 2622 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁))) = ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁))) |
| 35 | 20 | qrng0 25310 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘(ℂfld ↾s
ℚ)) |
| 36 | 25, 35 | frlm0 20098 |
. . . . . . . . . . 11
⊢
(((ℂfld ↾s ℚ) ∈ Ring ∧
(1...𝑁) ∈ Fin) →
((1...𝑁) × {0}) =
(0g‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁)))) |
| 37 | 23, 24, 36 | mp2an 708 |
. . . . . . . . . 10
⊢
((1...𝑁) ×
{0}) = (0g‘((ℂfld ↾s
ℚ) freeLMod (1...𝑁))) |
| 38 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
((ℂfld ↾s ℚ) freeLMod (0...𝑁)) = ((ℂfld
↾s ℚ) freeLMod (0...𝑁)) |
| 39 | 38, 29 | frlmfibas 20105 |
. . . . . . . . . . 11
⊢
(((ℂfld ↾s ℚ) ∈ DivRing
∧ (0...𝑁) ∈ Fin)
→ (ℚ ↑𝑚 (0...𝑁)) = (Base‘((ℂfld
↾s ℚ) freeLMod (0...𝑁)))) |
| 40 | 21, 28, 39 | mp2an 708 |
. . . . . . . . . 10
⊢ (ℚ
↑𝑚 (0...𝑁)) = (Base‘((ℂfld
↾s ℚ) freeLMod (0...𝑁))) |
| 41 | 31, 33, 34, 37, 35, 40 | islindf4 20177 |
. . . . . . . . 9
⊢
((((ℂfld ↾s ℚ) freeLMod
(1...𝑁)) ∈ LMod ∧
(0...𝑁) ∈ Fin ∧
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)⟶(ℚ ↑𝑚
(1...𝑁))) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂfld
↾s ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑𝑚
(0...𝑁))((((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})))) |
| 42 | 27, 28, 41 | mp3an12 1414 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)⟶(ℚ ↑𝑚
(1...𝑁)) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂfld
↾s ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑𝑚
(0...𝑁))((((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})))) |
| 43 | 19, 42 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂfld
↾s ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑𝑚
(0...𝑁))((((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})))) |
| 44 | | elmapi 7879 |
. . . . . . . . 9
⊢ (𝑤 ∈ (ℚ
↑𝑚 (0...𝑁)) → 𝑤:(0...𝑁)⟶ℚ) |
| 45 | | fzfid 12772 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (0...𝑁) ∈ Fin) |
| 46 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤‘𝑘) ∈ V) |
| 47 | 15 | mptex 6486 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ V |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ V) |
| 49 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → 𝑤:(0...𝑁)⟶ℚ) |
| 50 | 49 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → 𝑤 = (𝑘 ∈ (0...𝑁) ↦ (𝑤‘𝑘))) |
| 51 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) |
| 52 | 45, 46, 48, 50, 51 | offval2 6914 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘)( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶)))) |
| 53 | | fzfid 12772 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin) |
| 54 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑘 ∈ (0...𝑁)) → (𝑤‘𝑘) ∈ ℚ) |
| 55 | 54 | adantll 750 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤‘𝑘) ∈ ℚ) |
| 56 | 17 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) ∈ (ℚ ↑𝑚
(1...𝑁))) |
| 57 | | cnfldmul 19752 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ·
= (.r‘ℂfld) |
| 58 | 20, 57 | ressmulr 16006 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℚ
∈ V → · = (.r‘(ℂfld
↾s ℚ))) |
| 59 | 14, 58 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ·
= (.r‘(ℂfld ↾s
ℚ)) |
| 60 | 25, 31, 29, 53, 55, 56, 34, 59 | frlmvscafval 20109 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤‘𝑘)( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (((1...𝑁) × {(𝑤‘𝑘)}) ∘𝑓 ·
(𝑛 ∈ (1...𝑁) ↦ 𝐶))) |
| 61 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝑤‘𝑘) ∈ V) |
| 62 | 11 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℚ) |
| 63 | | fconstmpt 5163 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1...𝑁) ×
{(𝑤‘𝑘)}) = (𝑛 ∈ (1...𝑁) ↦ (𝑤‘𝑘)) |
| 64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((1...𝑁) × {(𝑤‘𝑘)}) = (𝑛 ∈ (1...𝑁) ↦ (𝑤‘𝑘))) |
| 65 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ 𝐶) = (𝑛 ∈ (1...𝑁) ↦ 𝐶)) |
| 66 | 53, 61, 62, 64, 65 | offval2 6914 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (((1...𝑁) × {(𝑤‘𝑘)}) ∘𝑓 ·
(𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶))) |
| 67 | 60, 66 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤‘𝑘)( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶))) |
| 68 | 67 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘)( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑛 ∈ (1...𝑁) ↦ 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)))) |
| 69 | 52, 68 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)))) |
| 70 | 69 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
(((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑤
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = (((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶))))) |
| 71 | | fzfid 12772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (1...𝑁) ∈ Fin) |
| 72 | 23 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
(ℂfld ↾s ℚ) ∈
Ring) |
| 73 | 55 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤‘𝑘) ∈ ℚ) |
| 74 | 11 | an32s 846 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℚ) |
| 75 | 74 | adantllr 755 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℚ) |
| 76 | | qmulcl 11806 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑤‘𝑘) ∈ ℚ ∧ 𝐶 ∈ ℚ) → ((𝑤‘𝑘) · 𝐶) ∈ ℚ) |
| 77 | 73, 75, 76 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤‘𝑘) · 𝐶) ∈ ℚ) |
| 78 | 77 | an32s 846 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑤‘𝑘) · 𝐶) ∈ ℚ) |
| 79 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)) = (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)) |
| 80 | 78, 79 | fmptd 6385 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)):(1...𝑁)⟶ℚ) |
| 81 | 14, 15 | elmap 7886 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)) ∈ (ℚ
↑𝑚 (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)):(1...𝑁)⟶ℚ) |
| 82 | 80, 81 | sylibr 224 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)) ∈ (ℚ
↑𝑚 (1...𝑁))) |
| 83 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶))) = (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶))) |
| 84 | 15 | mptex 6486 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)) ∈ V |
| 85 | 84 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)) ∈ V) |
| 86 | | snex 4908 |
. . . . . . . . . . . . . . . . . . 19
⊢ {0}
∈ V |
| 87 | 15, 86 | xpex 6962 |
. . . . . . . . . . . . . . . . . 18
⊢
((1...𝑁) ×
{0}) ∈ V |
| 88 | 87 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → ((1...𝑁) × {0}) ∈
V) |
| 89 | 83, 45, 85, 88 | fsuppmptdm 8286 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶))) finSupp ((1...𝑁) × {0})) |
| 90 | 25, 31, 37, 71, 45, 72, 82, 89 | frlmgsum 20111 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
(((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)))) = (𝑛 ∈ (1...𝑁) ↦ ((ℂfld
↾s ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘) · 𝐶))))) |
| 91 | | cnfldbas 19750 |
. . . . . . . . . . . . . . . . . 18
⊢ ℂ =
(Base‘ℂfld) |
| 92 | | cnfldadd 19751 |
. . . . . . . . . . . . . . . . . 18
⊢ + =
(+g‘ℂfld) |
| 93 | | cnfldex 19749 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℂfld ∈ V |
| 94 | 93 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ℂfld ∈
V) |
| 95 | | fzfid 12772 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (0...𝑁) ∈ Fin) |
| 96 | | qsscn 11799 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℚ
⊆ ℂ |
| 97 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ℚ ⊆
ℂ) |
| 98 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)) = (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)) |
| 99 | 77, 98 | fmptd 6385 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)):(0...𝑁)⟶ℚ) |
| 100 | | 0z 11388 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
ℤ |
| 101 | | zq 11794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℤ → 0 ∈ ℚ) |
| 102 | 100, 101 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℚ |
| 103 | 102 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → 0 ∈ ℚ) |
| 104 | | addid2 10219 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℂ → (0 +
𝑥) = 𝑥) |
| 105 | | addid1 10216 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℂ → (𝑥 + 0) = 𝑥) |
| 106 | 104, 105 | jca 554 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ ℂ → ((0 +
𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)) |
| 107 | 106 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑥 ∈ ℂ) → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)) |
| 108 | 91, 92, 20, 94, 95, 97, 99, 103, 107 | gsumress 17276 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (ℂfld
Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘) · 𝐶))) = ((ℂfld
↾s ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)))) |
| 109 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → 𝑤:(0...𝑁)⟶ℚ) |
| 110 | | qcn 11802 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑤‘𝑘) ∈ ℚ → (𝑤‘𝑘) ∈ ℂ) |
| 111 | 54, 110 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑘 ∈ (0...𝑁)) → (𝑤‘𝑘) ∈ ℂ) |
| 112 | 109, 111 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤‘𝑘) ∈ ℂ) |
| 113 | | qcn 11802 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐶 ∈ ℚ → 𝐶 ∈
ℂ) |
| 114 | 11, 113 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℂ) |
| 115 | 114 | an32s 846 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℂ) |
| 116 | 115 | adantllr 755 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → 𝐶 ∈ ℂ) |
| 117 | 112, 116 | mulcld 10060 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤‘𝑘) · 𝐶) ∈ ℂ) |
| 118 | 95, 117 | gsumfsum 19813 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (ℂfld
Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘) · 𝐶))) = Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)) |
| 119 | 108, 118 | eqtr3d 2658 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ((ℂfld
↾s ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘) · 𝐶))) = Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)) |
| 120 | 119 | mpteq2dva 4744 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑛 ∈ (1...𝑁) ↦ ((ℂfld
↾s ℚ) Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑤‘𝑘) · 𝐶)))) = (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶))) |
| 121 | 70, 90, 120 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
(((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑤
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶))) |
| 122 | | qaddcl 11804 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 + 𝑦) ∈ ℚ) |
| 123 | 122 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) ∧ (𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ)) → (𝑥 + 𝑦) ∈ ℚ) |
| 124 | 97, 123, 95, 77, 103 | fsumcllem 14463 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) ∈ ℚ) |
| 125 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)) = (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)) |
| 126 | 124, 125 | fmptd 6385 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)):(1...𝑁)⟶ℚ) |
| 127 | 14, 15 | elmap 7886 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)) ∈ (ℚ
↑𝑚 (1...𝑁)) ↔ (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)):(1...𝑁)⟶ℚ) |
| 128 | 126, 127 | sylibr 224 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)) ∈ (ℚ
↑𝑚 (1...𝑁))) |
| 129 | 121, 128 | eqeltrd 2701 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
(((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑤
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) ∈ (ℚ
↑𝑚 (1...𝑁))) |
| 130 | | elmapi 7879 |
. . . . . . . . . . . . 13
⊢
((((ℂfld ↾s ℚ) freeLMod
(1...𝑁))
Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) ∈ (ℚ
↑𝑚 (1...𝑁)) → (((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))):(1...𝑁)⟶ℚ) |
| 131 | | ffn 6045 |
. . . . . . . . . . . . 13
⊢
((((ℂfld ↾s ℚ) freeLMod
(1...𝑁))
Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))):(1...𝑁)⟶ℚ →
(((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑤
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) Fn (1...𝑁)) |
| 132 | 129, 130,
131 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
(((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑤
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) Fn (1...𝑁)) |
| 133 | | c0ex 10034 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
| 134 | | fnconstg 6093 |
. . . . . . . . . . . . 13
⊢ (0 ∈
V → ((1...𝑁) ×
{0}) Fn (1...𝑁)) |
| 135 | 133, 134 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
((1...𝑁) ×
{0}) Fn (1...𝑁) |
| 136 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛((ℂfld ↾s
ℚ) freeLMod (1...𝑁)) |
| 137 | | nfcv 2764 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛
Σg |
| 138 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛𝑤 |
| 139 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁))) |
| 140 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛(0...𝑁) |
| 141 | | nfmpt1 4747 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛(𝑛 ∈ (1...𝑁) ↦ 𝐶) |
| 142 | 140, 141 | nfmpt 4746 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑛(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) |
| 143 | 138, 139,
142 | nfov 6676 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑛(𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) |
| 144 | 136, 137,
143 | nfov 6676 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛(((ℂfld ↾s
ℚ) freeLMod (1...𝑁))
Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) |
| 145 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛((1...𝑁) × {0}) |
| 146 | 144, 145 | eqfnfv2f 6315 |
. . . . . . . . . . . 12
⊢
(((((ℂfld ↾s ℚ) freeLMod
(1...𝑁))
Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) Fn (1...𝑁) ∧ ((1...𝑁) × {0}) Fn (1...𝑁)) → ((((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)((((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛))) |
| 147 | 132, 135,
146 | sylancl 694 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
((((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑤
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)((((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛))) |
| 148 | 121 | fveq1d 6193 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
((((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑤
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶))‘𝑛)) |
| 149 | | sumex 14418 |
. . . . . . . . . . . . . . 15
⊢
Σ𝑘 ∈
(0...𝑁)((𝑤‘𝑘) · 𝐶) ∈ V |
| 150 | 125 | fvmpt2 6291 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ (1...𝑁) ∧ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) ∈ V) → ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶))‘𝑛) = Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)) |
| 151 | 149, 150 | mpan2 707 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑁) → ((𝑛 ∈ (1...𝑁) ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶))‘𝑛) = Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)) |
| 152 | 148, 151 | sylan9eq 2676 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → ((((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶)) |
| 153 | 133 | fvconst2 6469 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {0})‘𝑛) = 0) |
| 154 | 153 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (((1...𝑁) × {0})‘𝑛) = 0) |
| 155 | 152, 154 | eqeq12d 2637 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (((((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) |
| 156 | 155 | ralbidva 2985 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (∀𝑛 ∈ (1...𝑁)((((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))))‘𝑛) = (((1...𝑁) × {0})‘𝑛) ↔ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) |
| 157 | 147, 156 | bitrd 268 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
((((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑤
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) ↔ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) |
| 158 | 157 | imbi1d 331 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
(((((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑤
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})) ↔ (∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})))) |
| 159 | 44, 158 | sylan2 491 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (ℚ ↑𝑚
(0...𝑁))) →
(((((ℂfld ↾s ℚ) freeLMod (1...𝑁)) Σg
(𝑤
∘𝑓 ( ·𝑠
‘((ℂfld ↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})) ↔ (∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})))) |
| 160 | 159 | ralbidva 2985 |
. . . . . . 7
⊢ (𝜑 → (∀𝑤 ∈ (ℚ
↑𝑚 (0...𝑁))((((ℂfld
↾s ℚ) freeLMod (1...𝑁)) Σg (𝑤 ∘𝑓 (
·𝑠 ‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)))) = ((1...𝑁) × {0}) → 𝑤 = ((0...𝑁) × {0})) ↔ ∀𝑤 ∈ (ℚ
↑𝑚 (0...𝑁))(∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})))) |
| 161 | 43, 160 | bitrd 268 |
. . . . . 6
⊢ (𝜑 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂfld
↾s ℚ) freeLMod (1...𝑁)) ↔ ∀𝑤 ∈ (ℚ ↑𝑚
(0...𝑁))(∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})))) |
| 162 | | drngnzr 19262 |
. . . . . . . . 9
⊢
((ℂfld ↾s ℚ) ∈ DivRing
→ (ℂfld ↾s ℚ) ∈
NzRing) |
| 163 | 21, 162 | ax-mp 5 |
. . . . . . . 8
⊢
(ℂfld ↾s ℚ) ∈
NzRing |
| 164 | 33 | islindf3 20165 |
. . . . . . . 8
⊢
((((ℂfld ↾s ℚ) freeLMod
(1...𝑁)) ∈ LMod ∧
(ℂfld ↾s ℚ) ∈ NzRing) →
((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂfld
↾s ℚ) freeLMod (1...𝑁)) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))))) |
| 165 | 27, 163, 164 | mp2an 708 |
. . . . . . 7
⊢ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂfld
↾s ℚ) freeLMod (1...𝑁)) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))))) |
| 166 | 47, 18 | dmmpti 6023 |
. . . . . . . . 9
⊢ dom
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (0...𝑁) |
| 167 | | f1eq2 6097 |
. . . . . . . . 9
⊢ (dom
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) = (0...𝑁) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ↔ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V)) |
| 168 | 166, 167 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ↔ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V) |
| 169 | 168 | anbi1i 731 |
. . . . . . 7
⊢ (((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):dom (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))))) |
| 170 | 165, 169 | bitri 264 |
. . . . . 6
⊢ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) LIndF ((ℂfld
↾s ℚ) freeLMod (1...𝑁)) ↔ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))))) |
| 171 | | con34b 306 |
. . . . . . . . 9
⊢
((∀𝑛 ∈
(1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ (¬ 𝑤 = ((0...𝑁) × {0}) → ¬ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) |
| 172 | | df-nel 2898 |
. . . . . . . . . . 11
⊢ (𝑤 ∉ {((0...𝑁) × {0})} ↔ ¬
𝑤 ∈ {((0...𝑁) ×
{0})}) |
| 173 | | velsn 4193 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {((0...𝑁) × {0})} ↔ 𝑤 = ((0...𝑁) × {0})) |
| 174 | 172, 173 | xchbinx 324 |
. . . . . . . . . 10
⊢ (𝑤 ∉ {((0...𝑁) × {0})} ↔ ¬
𝑤 = ((0...𝑁) × {0})) |
| 175 | 174 | imbi1i 339 |
. . . . . . . . 9
⊢ ((𝑤 ∉ {((0...𝑁) × {0})} → ¬
∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0) ↔ (¬ 𝑤 = ((0...𝑁) × {0}) → ¬ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) |
| 176 | 171, 175 | bitr4i 267 |
. . . . . . . 8
⊢
((∀𝑛 ∈
(1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ (𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) |
| 177 | 176 | ralbii 2980 |
. . . . . . 7
⊢
(∀𝑤 ∈
(ℚ ↑𝑚 (0...𝑁))(∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ ∀𝑤 ∈ (ℚ
↑𝑚 (0...𝑁))(𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) |
| 178 | | raldifb 3750 |
. . . . . . 7
⊢
(∀𝑤 ∈
(ℚ ↑𝑚 (0...𝑁))(𝑤 ∉ {((0...𝑁) × {0})} → ¬ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0) ↔ ∀𝑤 ∈ ((ℚ ↑𝑚
(0...𝑁)) ∖
{((0...𝑁) × {0})})
¬ ∀𝑛 ∈
(1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0) |
| 179 | | ralnex 2992 |
. . . . . . 7
⊢
(∀𝑤 ∈
((ℚ ↑𝑚 (0...𝑁)) ∖ {((0...𝑁) × {0})}) ¬ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 ↔ ¬ ∃𝑤 ∈ ((ℚ ↑𝑚
(0...𝑁)) ∖
{((0...𝑁) ×
{0})})∀𝑛 ∈
(1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0) |
| 180 | 177, 178,
179 | 3bitri 286 |
. . . . . 6
⊢
(∀𝑤 ∈
(ℚ ↑𝑚 (0...𝑁))(∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 → 𝑤 = ((0...𝑁) × {0})) ↔ ¬ ∃𝑤 ∈ ((ℚ
↑𝑚 (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0) |
| 181 | 161, 170,
180 | 3bitr3g 302 |
. . . . 5
⊢ (𝜑 → (((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) ↔ ¬
∃𝑤 ∈ ((ℚ
↑𝑚 (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) |
| 182 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))) =
(LSubSp‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) |
| 183 | 31, 182 | lssmre 18966 |
. . . . . . . . . . . 12
⊢
(((ℂfld ↾s ℚ) freeLMod
(1...𝑁)) ∈ LMod →
(LSubSp‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) ∈
(Moore‘(ℚ ↑𝑚 (1...𝑁)))) |
| 184 | 27, 183 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))) ∈
(Moore‘(ℚ ↑𝑚 (1...𝑁))) |
| 185 | 184 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) →
(LSubSp‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) ∈
(Moore‘(ℚ ↑𝑚 (1...𝑁)))) |
| 186 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(LSpan‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))) =
(LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) |
| 187 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(mrCls‘(LSubSp‘((ℂfld ↾s
ℚ) freeLMod (1...𝑁)))) =
(mrCls‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁)))) |
| 188 | 182, 186,
187 | mrclsp 18989 |
. . . . . . . . . . 11
⊢
(((ℂfld ↾s ℚ) freeLMod
(1...𝑁)) ∈ LMod →
(LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) =
(mrCls‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))))) |
| 189 | 27, 188 | ax-mp 5 |
. . . . . . . . . 10
⊢
(LSpan‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))) =
(mrCls‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁)))) |
| 190 | | eqid 2622 |
. . . . . . . . . 10
⊢
(mrInd‘(LSubSp‘((ℂfld ↾s
ℚ) freeLMod (1...𝑁)))) =
(mrInd‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁)))) |
| 191 | 33 | islvec 19104 |
. . . . . . . . . . . . 13
⊢
(((ℂfld ↾s ℚ) freeLMod
(1...𝑁)) ∈ LVec ↔
(((ℂfld ↾s ℚ) freeLMod (1...𝑁)) ∈ LMod ∧
(ℂfld ↾s ℚ) ∈
DivRing)) |
| 192 | 27, 21, 191 | mpbir2an 955 |
. . . . . . . . . . . 12
⊢
((ℂfld ↾s ℚ) freeLMod (1...𝑁)) ∈ LVec |
| 193 | 182, 189,
31 | lssacsex 19144 |
. . . . . . . . . . . . 13
⊢
(((ℂfld ↾s ℚ) freeLMod
(1...𝑁)) ∈ LVec →
((LSubSp‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) ∈
(ACS‘(ℚ ↑𝑚 (1...𝑁))) ∧ ∀𝑧 ∈ 𝒫 (ℚ
↑𝑚 (1...𝑁))∀𝑥 ∈ (ℚ ↑𝑚
(1...𝑁))∀𝑦 ∈
(((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖
((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦})))) |
| 194 | 193 | simprd 479 |
. . . . . . . . . . . 12
⊢
(((ℂfld ↾s ℚ) freeLMod
(1...𝑁)) ∈ LVec →
∀𝑧 ∈ 𝒫
(ℚ ↑𝑚 (1...𝑁))∀𝑥 ∈ (ℚ ↑𝑚
(1...𝑁))∀𝑦 ∈
(((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖
((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦}))) |
| 195 | 192, 194 | ax-mp 5 |
. . . . . . . . . . 11
⊢
∀𝑧 ∈
𝒫 (ℚ ↑𝑚 (1...𝑁))∀𝑥 ∈ (ℚ ↑𝑚
(1...𝑁))∀𝑦 ∈
(((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖
((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦})) |
| 196 | 195 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) →
∀𝑧 ∈ 𝒫
(ℚ ↑𝑚 (1...𝑁))∀𝑥 ∈ (ℚ ↑𝑚
(1...𝑁))∀𝑦 ∈
(((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘(𝑧 ∪ {𝑥})) ∖
((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘𝑧))𝑥 ∈ ((LSpan‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))‘(𝑧 ∪ {𝑦}))) |
| 197 | | frn 6053 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)⟶(ℚ ↑𝑚
(1...𝑁)) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ (ℚ
↑𝑚 (1...𝑁))) |
| 198 | 19, 197 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ (ℚ
↑𝑚 (1...𝑁))) |
| 199 | | dif0 3950 |
. . . . . . . . . . . 12
⊢ ((ℚ
↑𝑚 (1...𝑁)) ∖ ∅) = (ℚ
↑𝑚 (1...𝑁)) |
| 200 | 198, 199 | syl6sseqr 3652 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ ((ℚ
↑𝑚 (1...𝑁)) ∖ ∅)) |
| 201 | 200 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) → ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ ((ℚ
↑𝑚 (1...𝑁)) ∖ ∅)) |
| 202 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
((ℂfld ↾s ℚ) unitVec (1...𝑁)) = ((ℂfld
↾s ℚ) unitVec (1...𝑁)) |
| 203 | 202, 25, 31 | uvcff 20130 |
. . . . . . . . . . . . . 14
⊢
(((ℂfld ↾s ℚ) ∈ Ring ∧
(1...𝑁) ∈ Fin) →
((ℂfld ↾s ℚ) unitVec (1...𝑁)):(1...𝑁)⟶(ℚ ↑𝑚
(1...𝑁))) |
| 204 | 23, 24, 203 | mp2an 708 |
. . . . . . . . . . . . 13
⊢
((ℂfld ↾s ℚ) unitVec (1...𝑁)):(1...𝑁)⟶(ℚ ↑𝑚
(1...𝑁)) |
| 205 | | frn 6053 |
. . . . . . . . . . . . 13
⊢
(((ℂfld ↾s ℚ) unitVec (1...𝑁)):(1...𝑁)⟶(ℚ ↑𝑚
(1...𝑁)) → ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ⊆ (ℚ
↑𝑚 (1...𝑁))) |
| 206 | 204, 205 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ⊆ (ℚ
↑𝑚 (1...𝑁)) |
| 207 | 206, 199 | sseqtr4i 3638 |
. . . . . . . . . . 11
⊢ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ⊆ ((ℚ
↑𝑚 (1...𝑁)) ∖ ∅) |
| 208 | 207 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) → ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ⊆ ((ℚ
↑𝑚 (1...𝑁)) ∖ ∅)) |
| 209 | | un0 3967 |
. . . . . . . . . . . . . 14
⊢ (ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∪ ∅) = ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) |
| 210 | 209 | fveq2i 6194 |
. . . . . . . . . . . . 13
⊢
((LSpan‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁)))‘(ran ((ℂfld
↾s ℚ) unitVec (1...𝑁)) ∪ ∅)) =
((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘ran
((ℂfld ↾s ℚ) unitVec (1...𝑁))) |
| 211 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(LBasis‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))) =
(LBasis‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) |
| 212 | 25, 202, 211 | frlmlbs 20136 |
. . . . . . . . . . . . . . 15
⊢
(((ℂfld ↾s ℚ) ∈ Ring ∧
(1...𝑁) ∈ Fin) →
ran ((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∈
(LBasis‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) |
| 213 | 23, 24, 212 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∈
(LBasis‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) |
| 214 | 31, 211, 186 | lbssp 19079 |
. . . . . . . . . . . . . 14
⊢ (ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∈
(LBasis‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) →
((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘ran
((ℂfld ↾s ℚ) unitVec (1...𝑁))) = (ℚ
↑𝑚 (1...𝑁))) |
| 215 | 213, 214 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
((LSpan‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁)))‘ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) = (ℚ ↑𝑚
(1...𝑁)) |
| 216 | 210, 215 | eqtri 2644 |
. . . . . . . . . . . 12
⊢
((LSpan‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁)))‘(ran ((ℂfld
↾s ℚ) unitVec (1...𝑁)) ∪ ∅)) = (ℚ
↑𝑚 (1...𝑁)) |
| 217 | 198, 216 | syl6sseqr 3652 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆
((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘(ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∪
∅))) |
| 218 | 217 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) → ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆
((LSpan‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))‘(ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∪
∅))) |
| 219 | | un0 3967 |
. . . . . . . . . . 11
⊢ (ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∪ ∅) = ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) |
| 220 | 27, 163 | pm3.2i 471 |
. . . . . . . . . . . . . 14
⊢
(((ℂfld ↾s ℚ) freeLMod
(1...𝑁)) ∈ LMod ∧
(ℂfld ↾s ℚ) ∈
NzRing) |
| 221 | 186, 33 | lindsind2 20158 |
. . . . . . . . . . . . . 14
⊢
(((((ℂfld ↾s ℚ) freeLMod
(1...𝑁)) ∈ LMod ∧
(ℂfld ↾s ℚ) ∈ NzRing) ∧ ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) ∧ 𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) → ¬ 𝑥 ∈ ((LSpan‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥}))) |
| 222 | 220, 221 | mp3an1 1411 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) ∧ 𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) → ¬ 𝑥 ∈ ((LSpan‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥}))) |
| 223 | 222 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ (ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) →
∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥}))) |
| 224 | 189, 190 | ismri2 16292 |
. . . . . . . . . . . . . 14
⊢
(((LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))) ∈
(Moore‘(ℚ ↑𝑚 (1...𝑁))) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ⊆ (ℚ
↑𝑚 (1...𝑁))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(mrInd‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁)))) ↔
∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥})))) |
| 225 | 184, 198,
224 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(mrInd‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁)))) ↔
∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥})))) |
| 226 | 225 | biimpar 502 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∀𝑥 ∈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ¬ 𝑥 ∈ ((LSpan‘((ℂfld
↾s ℚ) freeLMod (1...𝑁)))‘(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∖ {𝑥}))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(mrInd‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))))) |
| 227 | 223, 226 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) → ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(mrInd‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))))) |
| 228 | 219, 227 | syl5eqel 2705 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) → (ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∪ ∅) ∈
(mrInd‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))))) |
| 229 | | mptfi 8265 |
. . . . . . . . . . . . 13
⊢
((0...𝑁) ∈ Fin
→ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin) |
| 230 | | rnfi 8249 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin) |
| 231 | 28, 229, 230 | mp2b 10 |
. . . . . . . . . . . 12
⊢ ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin |
| 232 | 231 | orci 405 |
. . . . . . . . . . 11
⊢ (ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin ∨ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∈ Fin) |
| 233 | 232 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) → (ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈ Fin ∨ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∈ Fin)) |
| 234 | 185, 189,
190, 196, 201, 208, 218, 228, 233 | mreexexd 16308 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) →
∃𝑣 ∈ 𝒫
ran ((ℂfld ↾s ℚ) unitVec (1...𝑁))(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈
(mrInd‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁)))))) |
| 235 | 234 | ex 450 |
. . . . . . . 8
⊢ (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) →
∃𝑣 ∈ 𝒫
ran ((ℂfld ↾s ℚ) unitVec (1...𝑁))(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈
(mrInd‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))))))) |
| 236 | | ovex 6678 |
. . . . . . . . . . . . 13
⊢
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∈ V |
| 237 | 236 | rnex 7100 |
. . . . . . . . . . . 12
⊢ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∈ V |
| 238 | | elpwi 4168 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ 𝒫 ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) → 𝑣 ⊆ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) |
| 239 | | ssdomg 8001 |
. . . . . . . . . . . 12
⊢ (ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∈ V → (𝑣 ⊆ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) → 𝑣 ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁)))) |
| 240 | 237, 238,
239 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ 𝒫 ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) → 𝑣 ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) |
| 241 | | endomtr 8014 |
. . . . . . . . . . . . . 14
⊢ ((ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ 𝑣 ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) |
| 242 | 241 | ancoms 469 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ≼ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣) → ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) |
| 243 | | f1f1orn 6148 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1-onto→ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) |
| 244 | | ovex 6678 |
. . . . . . . . . . . . . . . . 17
⊢
(0...𝑁) ∈
V |
| 245 | 244 | f1oen 7976 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1-onto→ran
(𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) → (0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) |
| 246 | 243, 245 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶))) |
| 247 | | endomtr 8014 |
. . . . . . . . . . . . . . . . 17
⊢
(((0...𝑁) ≈
ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) → (0...𝑁) ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) |
| 248 | 202 | uvcendim 20186 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℂfld ↾s ℚ) ∈ NzRing
∧ (1...𝑁) ∈ Fin)
→ (1...𝑁) ≈ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁))) |
| 249 | 163, 24, 248 | mp2an 708 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1...𝑁) ≈ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) |
| 250 | 249 | ensymi 8006 |
. . . . . . . . . . . . . . . . . 18
⊢ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ≈ (1...𝑁) |
| 251 | | domentr 8015 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((0...𝑁) ≼
ran ((ℂfld ↾s ℚ) unitVec (1...𝑁)) ∧ ran
((ℂfld ↾s ℚ) unitVec (1...𝑁)) ≈ (1...𝑁)) → (0...𝑁) ≼ (1...𝑁)) |
| 252 | | hashdom 13168 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((0...𝑁) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ ((#‘(0...𝑁))
≤ (#‘(1...𝑁))
↔ (0...𝑁) ≼
(1...𝑁))) |
| 253 | 28, 24, 252 | mp2an 708 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘(0...𝑁))
≤ (#‘(1...𝑁))
↔ (0...𝑁) ≼
(1...𝑁)) |
| 254 | | hashfz0 13219 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ (#‘(0...𝑁)) =
(𝑁 + 1)) |
| 255 | 2, 254 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (#‘(0...𝑁)) = (𝑁 + 1)) |
| 256 | | hashfz1 13134 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ (#‘(1...𝑁)) =
𝑁) |
| 257 | 2, 256 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (#‘(1...𝑁)) = 𝑁) |
| 258 | 255, 257 | breq12d 4666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((#‘(0...𝑁)) ≤ (#‘(1...𝑁)) ↔ (𝑁 + 1) ≤ 𝑁)) |
| 259 | 253, 258 | syl5bbr 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((0...𝑁) ≼ (1...𝑁) ↔ (𝑁 + 1) ≤ 𝑁)) |
| 260 | 251, 259 | syl5ib 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (((0...𝑁) ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁)) ∧ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁)) ≈ (1...𝑁)) → (𝑁 + 1) ≤ 𝑁)) |
| 261 | 250, 260 | mpan2i 713 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((0...𝑁) ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁)) → (𝑁 + 1) ≤ 𝑁)) |
| 262 | 247, 261 | syl5 34 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) → (𝑁 + 1) ≤ 𝑁)) |
| 263 | 262 | expd 452 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((0...𝑁) ≈ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁)) → (𝑁 + 1) ≤ 𝑁))) |
| 264 | 246, 263 | syl5 34 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁)) → (𝑁 + 1) ≤ 𝑁))) |
| 265 | 264 | com23 86 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁)) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁))) |
| 266 | 242, 265 | syl5 34 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑣 ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁)) ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁))) |
| 267 | 266 | expdimp 453 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑣 ≼ ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁))) |
| 268 | 240, 267 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑣 ∈ 𝒫 ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁))) |
| 269 | 268 | adantrd 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑣 ∈ 𝒫 ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))) → ((ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈
(mrInd‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))))) →
((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁))) |
| 270 | 269 | rexlimdva 3031 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑣 ∈ 𝒫 ran ((ℂfld
↾s ℚ) unitVec (1...𝑁))(ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ≈ 𝑣 ∧ (𝑣 ∪ ∅) ∈
(mrInd‘(LSubSp‘((ℂfld ↾s ℚ)
freeLMod (1...𝑁))))) →
((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁))) |
| 271 | 235, 270 | syld 47 |
. . . . . . 7
⊢ (𝜑 → (ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) → ((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V → (𝑁 + 1) ≤ 𝑁))) |
| 272 | 271 | impd 447 |
. . . . . 6
⊢ (𝜑 → ((ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁))) ∧ (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V) → (𝑁 + 1) ≤ 𝑁)) |
| 273 | 272 | ancomsd 470 |
. . . . 5
⊢ (𝜑 → (((𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)):(0...𝑁)–1-1→V ∧ ran (𝑘 ∈ (0...𝑁) ↦ (𝑛 ∈ (1...𝑁) ↦ 𝐶)) ∈
(LIndS‘((ℂfld ↾s ℚ) freeLMod
(1...𝑁)))) → (𝑁 + 1) ≤ 𝑁)) |
| 274 | 181, 273 | sylbird 250 |
. . . 4
⊢ (𝜑 → (¬ ∃𝑤 ∈ ((ℚ
↑𝑚 (0...𝑁)) ∖ {((0...𝑁) × {0})})∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 → (𝑁 + 1) ≤ 𝑁)) |
| 275 | 9, 274 | mt3d 140 |
. . 3
⊢ (𝜑 → ∃𝑤 ∈ ((ℚ ↑𝑚
(0...𝑁)) ∖
{((0...𝑁) ×
{0})})∀𝑛 ∈
(1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0) |
| 276 | | eldifsn 4317 |
. . . . 5
⊢ (𝑤 ∈ ((ℚ
↑𝑚 (0...𝑁)) ∖ {((0...𝑁) × {0})}) ↔ (𝑤 ∈ (ℚ ↑𝑚
(0...𝑁)) ∧ 𝑤 ≠ ((0...𝑁) × {0}))) |
| 277 | 44 | anim1i 592 |
. . . . 5
⊢ ((𝑤 ∈ (ℚ
↑𝑚 (0...𝑁)) ∧ 𝑤 ≠ ((0...𝑁) × {0})) → (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) |
| 278 | 276, 277 | sylbi 207 |
. . . 4
⊢ (𝑤 ∈ ((ℚ
↑𝑚 (0...𝑁)) ∖ {((0...𝑁) × {0})}) → (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) |
| 279 | 96 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → ℚ ⊆
ℂ) |
| 280 | 2 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → 𝑁 ∈
ℕ0) |
| 281 | 279, 280,
55 | elplyd 23958 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) ∈
(Poly‘ℚ)) |
| 282 | 281 | adantrr 753 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) ∈
(Poly‘ℚ)) |
| 283 | | uzdisj 12413 |
. . . . . . . . . . . . . . . . . 18
⊢
((0...((𝑁 + 1)
− 1)) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ |
| 284 | 2 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 285 | | pncan1 10454 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) |
| 286 | 284, 285 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
| 287 | 286 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
| 288 | 287 | ineq1d 3813 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ((0...((𝑁 + 1) − 1)) ∩
(ℤ≥‘(𝑁 + 1))) = ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1)))) |
| 289 | 283, 288 | syl5eqr 2670 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∅ = ((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1)))) |
| 290 | 289 | eqcomd 2628 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) =
∅) |
| 291 | 133 | fconst 6091 |
. . . . . . . . . . . . . . . . . 18
⊢
((ℤ≥‘(𝑁 + 1)) ×
{0}):(ℤ≥‘(𝑁 + 1))⟶{0} |
| 292 | | snssi 4339 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
ℚ → {0} ⊆ ℚ) |
| 293 | 100, 101,
292 | mp2b 10 |
. . . . . . . . . . . . . . . . . . 19
⊢ {0}
⊆ ℚ |
| 294 | 293, 96 | sstri 3612 |
. . . . . . . . . . . . . . . . . 18
⊢ {0}
⊆ ℂ |
| 295 | | fss 6056 |
. . . . . . . . . . . . . . . . . 18
⊢
((((ℤ≥‘(𝑁 + 1)) ×
{0}):(ℤ≥‘(𝑁 + 1))⟶{0} ∧ {0} ⊆ ℂ)
→ ((ℤ≥‘(𝑁 + 1)) ×
{0}):(ℤ≥‘(𝑁 + 1))⟶ℂ) |
| 296 | 291, 294,
295 | mp2an 708 |
. . . . . . . . . . . . . . . . 17
⊢
((ℤ≥‘(𝑁 + 1)) ×
{0}):(ℤ≥‘(𝑁 + 1))⟶ℂ |
| 297 | | fun 6066 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤:(0...𝑁)⟶ℚ ∧
((ℤ≥‘(𝑁 + 1)) ×
{0}):(ℤ≥‘(𝑁 + 1))⟶ℂ) ∧ ((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))) = ∅) → (𝑤 ∪
((ℤ≥‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))⟶(ℚ ∪
ℂ)) |
| 298 | 296, 297 | mpanl2 717 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤:(0...𝑁)⟶ℚ ∧ ((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))) = ∅) → (𝑤 ∪
((ℤ≥‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))⟶(ℚ ∪
ℂ)) |
| 299 | 290, 298 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝜑) → (𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0})):((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))⟶(ℚ ∪
ℂ)) |
| 300 | 299 | ancoms 469 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0})):((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))⟶(ℚ ∪
ℂ)) |
| 301 | | nn0uz 11722 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 = (ℤ≥‘0) |
| 302 | 6, 301 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘0)) |
| 303 | | uzsplit 12412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) |
| 304 | 302, 303 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1)))) |
| 305 | 301, 304 | syl5eq 2668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℕ0 =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) |
| 306 | 287 | uneq1d 3766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
| 307 | 305, 306 | eqtr2d 2657 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1))) =
ℕ0) |
| 308 | | ssequn1 3783 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℚ
⊆ ℂ ↔ (ℚ ∪ ℂ) = ℂ) |
| 309 | 96, 308 | mpbi 220 |
. . . . . . . . . . . . . . . . 17
⊢ (ℚ
∪ ℂ) = ℂ |
| 310 | 309 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (ℚ ∪ ℂ) =
ℂ) |
| 311 | 307, 310 | feq23d 6040 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0})):((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))⟶(ℚ ∪ ℂ)
↔ (𝑤 ∪
((ℤ≥‘(𝑁 + 1)) ×
{0})):ℕ0⟶ℂ)) |
| 312 | 311 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → ((𝑤 ∪
((ℤ≥‘(𝑁 + 1)) × {0})):((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))⟶(ℚ ∪
ℂ) ↔ (𝑤 ∪
((ℤ≥‘(𝑁 + 1)) ×
{0})):ℕ0⟶ℂ)) |
| 313 | 300, 312 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) ×
{0})):ℕ0⟶ℂ) |
| 314 | | ffn 6045 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤:(0...𝑁)⟶ℚ → 𝑤 Fn (0...𝑁)) |
| 315 | | fnimadisj 6012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 Fn (0...𝑁) ∧ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅) → (𝑤 “
(ℤ≥‘(𝑁 + 1))) = ∅) |
| 316 | 314, 290,
315 | syl2anr 495 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑤 “ (ℤ≥‘(𝑁 + 1))) =
∅) |
| 317 | 2 | nn0zd 11480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 318 | 317 | peano2zd 11485 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
| 319 | | uzid 11702 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 + 1) ∈ ℤ →
(𝑁 + 1) ∈
(ℤ≥‘(𝑁 + 1))) |
| 320 | | ne0i 3921 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 + 1) ∈
(ℤ≥‘(𝑁 + 1)) →
(ℤ≥‘(𝑁 + 1)) ≠ ∅) |
| 321 | 318, 319,
320 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ≠ ∅) |
| 322 | | inidm 3822 |
. . . . . . . . . . . . . . . . . . 19
⊢
((ℤ≥‘(𝑁 + 1)) ∩
(ℤ≥‘(𝑁 + 1))) =
(ℤ≥‘(𝑁 + 1)) |
| 323 | 322 | neeq1i 2858 |
. . . . . . . . . . . . . . . . . 18
⊢
(((ℤ≥‘(𝑁 + 1)) ∩
(ℤ≥‘(𝑁 + 1))) ≠ ∅ ↔
(ℤ≥‘(𝑁 + 1)) ≠ ∅) |
| 324 | 321, 323 | sylibr 224 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
((ℤ≥‘(𝑁 + 1)) ∩
(ℤ≥‘(𝑁 + 1))) ≠ ∅) |
| 325 | | xpima2 5578 |
. . . . . . . . . . . . . . . . 17
⊢
(((ℤ≥‘(𝑁 + 1)) ∩
(ℤ≥‘(𝑁 + 1))) ≠ ∅ →
(((ℤ≥‘(𝑁 + 1)) × {0}) “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 326 | 324, 325 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(((ℤ≥‘(𝑁 + 1)) × {0}) “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 327 | 326 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
(((ℤ≥‘(𝑁 + 1)) × {0}) “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 328 | 316, 327 | uneq12d 3768 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → ((𝑤 “
(ℤ≥‘(𝑁 + 1))) ∪
(((ℤ≥‘(𝑁 + 1)) × {0}) “
(ℤ≥‘(𝑁 + 1)))) = (∅ ∪
{0})) |
| 329 | | imaundir 5546 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∪
((ℤ≥‘(𝑁 + 1)) × {0})) “
(ℤ≥‘(𝑁 + 1))) = ((𝑤 “ (ℤ≥‘(𝑁 + 1))) ∪
(((ℤ≥‘(𝑁 + 1)) × {0}) “
(ℤ≥‘(𝑁 + 1)))) |
| 330 | | uncom 3757 |
. . . . . . . . . . . . . . 15
⊢ (∅
∪ {0}) = ({0} ∪ ∅) |
| 331 | | un0 3967 |
. . . . . . . . . . . . . . 15
⊢ ({0}
∪ ∅) = {0} |
| 332 | 330, 331 | eqtr2i 2645 |
. . . . . . . . . . . . . 14
⊢ {0} =
(∅ ∪ {0}) |
| 333 | 328, 329,
332 | 3eqtr4g 2681 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → ((𝑤 ∪
((ℤ≥‘(𝑁 + 1)) × {0})) “
(ℤ≥‘(𝑁 + 1))) = {0}) |
| 334 | 290, 314 | anim12ci 591 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑤 Fn (0...𝑁) ∧ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) =
∅)) |
| 335 | | fnconstg 6093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
V → ((ℤ≥‘(𝑁 + 1)) × {0}) Fn
(ℤ≥‘(𝑁 + 1))) |
| 336 | 133, 335 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((ℤ≥‘(𝑁 + 1)) × {0}) Fn
(ℤ≥‘(𝑁 + 1)) |
| 337 | | fvun1 6269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑤 Fn (0...𝑁) ∧
((ℤ≥‘(𝑁 + 1)) × {0}) Fn
(ℤ≥‘(𝑁 + 1)) ∧ (((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ ∧ 𝑘 ∈ (0...𝑁))) → ((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤‘𝑘)) |
| 338 | 336, 337 | mp3an2 1412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 Fn (0...𝑁) ∧ (((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅ ∧ 𝑘 ∈ (0...𝑁))) → ((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤‘𝑘)) |
| 339 | 338 | anassrs 680 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 Fn (0...𝑁) ∧ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))) = ∅) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤‘𝑘)) |
| 340 | 334, 339 | sylan 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0}))‘𝑘) = (𝑤‘𝑘)) |
| 341 | 340 | eqcomd 2628 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤‘𝑘) = ((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0}))‘𝑘)) |
| 342 | 341 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤‘𝑘) · (𝑦↑𝑘)) = (((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0}))‘𝑘) · (𝑦↑𝑘))) |
| 343 | 342 | sumeq2dv 14433 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)) = Σ𝑘 ∈ (0...𝑁)(((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0}))‘𝑘) · (𝑦↑𝑘))) |
| 344 | 343 | mpteq2dv 4745 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0}))‘𝑘) · (𝑦↑𝑘)))) |
| 345 | 281, 280,
313, 333, 344 | coeeq 23983 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (coeff‘(𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) = (𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) ×
{0}))) |
| 346 | 345 | reseq1d 5395 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
((coeff‘(𝑦 ∈
ℂ ↦ Σ𝑘
∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) ↾ (0...𝑁)) = ((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0})) ↾
(0...𝑁))) |
| 347 | | res0 5400 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ↾ ∅) =
∅ |
| 348 | 289 | reseq2d 5396 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑤 ↾ ∅) = (𝑤 ↾ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1))))) |
| 349 | | res0 5400 |
. . . . . . . . . . . . . . 15
⊢
(((ℤ≥‘(𝑁 + 1)) × {0}) ↾ ∅) =
∅ |
| 350 | 289 | reseq2d 5396 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(((ℤ≥‘(𝑁 + 1)) × {0}) ↾ ∅) =
(((ℤ≥‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))))) |
| 351 | 349, 350 | syl5eqr 2670 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∅ =
(((ℤ≥‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))))) |
| 352 | 347, 348,
351 | 3eqtr3a 2680 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ↾ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1)))) =
(((ℤ≥‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))))) |
| 353 | | fss 6056 |
. . . . . . . . . . . . . . 15
⊢
((((ℤ≥‘(𝑁 + 1)) ×
{0}):(ℤ≥‘(𝑁 + 1))⟶{0} ∧ {0} ⊆ ℚ)
→ ((ℤ≥‘(𝑁 + 1)) ×
{0}):(ℤ≥‘(𝑁 + 1))⟶ℚ) |
| 354 | 291, 293,
353 | mp2an 708 |
. . . . . . . . . . . . . 14
⊢
((ℤ≥‘(𝑁 + 1)) ×
{0}):(ℤ≥‘(𝑁 + 1))⟶ℚ |
| 355 | | fresaunres1 6077 |
. . . . . . . . . . . . . 14
⊢ ((𝑤:(0...𝑁)⟶ℚ ∧
((ℤ≥‘(𝑁 + 1)) ×
{0}):(ℤ≥‘(𝑁 + 1))⟶ℚ ∧ (𝑤 ↾ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1)))) =
(((ℤ≥‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))))) → ((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0})) ↾
(0...𝑁)) = 𝑤) |
| 356 | 354, 355 | mp3an2 1412 |
. . . . . . . . . . . . 13
⊢ ((𝑤:(0...𝑁)⟶ℚ ∧ (𝑤 ↾ ((0...𝑁) ∩ (ℤ≥‘(𝑁 + 1)))) =
(((ℤ≥‘(𝑁 + 1)) × {0}) ↾ ((0...𝑁) ∩
(ℤ≥‘(𝑁 + 1))))) → ((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0})) ↾
(0...𝑁)) = 𝑤) |
| 357 | 352, 356 | sylan2 491 |
. . . . . . . . . . . 12
⊢ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝜑) → ((𝑤 ∪ ((ℤ≥‘(𝑁 + 1)) × {0})) ↾
(0...𝑁)) = 𝑤) |
| 358 | 357 | ancoms 469 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → ((𝑤 ∪
((ℤ≥‘(𝑁 + 1)) × {0})) ↾ (0...𝑁)) = 𝑤) |
| 359 | 346, 358 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) →
((coeff‘(𝑦 ∈
ℂ ↦ Σ𝑘
∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) ↾ (0...𝑁)) = 𝑤) |
| 360 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) = 0𝑝 →
(coeff‘(𝑦 ∈
ℂ ↦ Σ𝑘
∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) =
(coeff‘0𝑝)) |
| 361 | 360 | reseq1d 5395 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) = 0𝑝 →
((coeff‘(𝑦 ∈
ℂ ↦ Σ𝑘
∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝)
↾ (0...𝑁))) |
| 362 | | eqtr2 2642 |
. . . . . . . . . . . 12
⊢
((((coeff‘(𝑦
∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) ↾ (0...𝑁)) = 𝑤 ∧ ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝)
↾ (0...𝑁))) →
𝑤 =
((coeff‘0𝑝) ↾ (0...𝑁))) |
| 363 | | coe0 24012 |
. . . . . . . . . . . . . 14
⊢
(coeff‘0𝑝) = (ℕ0 ×
{0}) |
| 364 | 363 | reseq1i 5392 |
. . . . . . . . . . . . 13
⊢
((coeff‘0𝑝) ↾ (0...𝑁)) = ((ℕ0 × {0})
↾ (0...𝑁)) |
| 365 | | elfznn0 12433 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (0...𝑁) → 𝑥 ∈ ℕ0) |
| 366 | 365 | ssriv 3607 |
. . . . . . . . . . . . . 14
⊢
(0...𝑁) ⊆
ℕ0 |
| 367 | | xpssres 5434 |
. . . . . . . . . . . . . 14
⊢
((0...𝑁) ⊆
ℕ0 → ((ℕ0 × {0}) ↾
(0...𝑁)) = ((0...𝑁) × {0})) |
| 368 | 366, 367 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
((ℕ0 × {0}) ↾ (0...𝑁)) = ((0...𝑁) × {0}) |
| 369 | 364, 368 | eqtri 2644 |
. . . . . . . . . . . 12
⊢
((coeff‘0𝑝) ↾ (0...𝑁)) = ((0...𝑁) × {0}) |
| 370 | 362, 369 | syl6eq 2672 |
. . . . . . . . . . 11
⊢
((((coeff‘(𝑦
∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) ↾ (0...𝑁)) = 𝑤 ∧ ((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝)
↾ (0...𝑁))) →
𝑤 = ((0...𝑁) × {0})) |
| 371 | 370 | ex 450 |
. . . . . . . . . 10
⊢
(((coeff‘(𝑦
∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) ↾ (0...𝑁)) = 𝑤 → (((coeff‘(𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))) ↾ (0...𝑁)) = ((coeff‘0𝑝)
↾ (0...𝑁)) →
𝑤 = ((0...𝑁) × {0}))) |
| 372 | 359, 361,
371 | syl2im 40 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → ((𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) = 0𝑝 → 𝑤 = ((0...𝑁) × {0}))) |
| 373 | 372 | necon3d 2815 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → (𝑤 ≠ ((0...𝑁) × {0}) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) ≠
0𝑝)) |
| 374 | 373 | impr 649 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) ≠
0𝑝) |
| 375 | | eldifsn 4317 |
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) ∈ ((Poly‘ℚ) ∖
{0𝑝}) ↔ ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) ∈ (Poly‘ℚ) ∧ (𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) ≠
0𝑝)) |
| 376 | 282, 374,
375 | sylanbrc 698 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0}))) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) ∈ ((Poly‘ℚ) ∖
{0𝑝})) |
| 377 | 376 | adantrr 753 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})) ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) ∈ ((Poly‘ℚ) ∖
{0𝑝})) |
| 378 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (𝑦↑𝑘) = (𝐴↑𝑘)) |
| 379 | 378 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → ((𝑤‘𝑘) · (𝑦↑𝑘)) = ((𝑤‘𝑘) · (𝐴↑𝑘))) |
| 380 | 379 | sumeq2sdv 14435 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝐴↑𝑘))) |
| 381 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) |
| 382 | | sumex 14418 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...𝑁)((𝑤‘𝑘) · (𝐴↑𝑘)) ∈ V |
| 383 | 380, 381,
382 | fvmpt 6282 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝐴↑𝑘))) |
| 384 | 1, 383 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝐴↑𝑘))) |
| 385 | 384 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))‘𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝐴↑𝑘))) |
| 386 | 111 | adantll 750 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑤‘𝑘) ∈ ℂ) |
| 387 | | aacllem.2 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) |
| 388 | 387 | adantlr 751 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) |
| 389 | 114, 388 | mulcld 10060 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝐶 · 𝑋) ∈ ℂ) |
| 390 | 389 | adantllr 755 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝐶 · 𝑋) ∈ ℂ) |
| 391 | 53, 386, 390 | fsummulc2 14516 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤‘𝑘) · Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)) = Σ𝑛 ∈ (1...𝑁)((𝑤‘𝑘) · (𝐶 · 𝑋))) |
| 392 | | aacllem.4 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴↑𝑘) = Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋)) |
| 393 | 392 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤‘𝑘) · (𝐴↑𝑘)) = ((𝑤‘𝑘) · Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋))) |
| 394 | 393 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤‘𝑘) · (𝐴↑𝑘)) = ((𝑤‘𝑘) · Σ𝑛 ∈ (1...𝑁)(𝐶 · 𝑋))) |
| 395 | 386 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (𝑤‘𝑘) ∈ ℂ) |
| 396 | 114 | adantllr 755 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝐶 ∈ ℂ) |
| 397 | | simpll 790 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → 𝜑) |
| 398 | 397, 387 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) |
| 399 | 395, 396,
398 | mulassd 10063 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑤‘𝑘) · 𝐶) · 𝑋) = ((𝑤‘𝑘) · (𝐶 · 𝑋))) |
| 400 | 399 | sumeq2dv 14433 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋) = Σ𝑛 ∈ (1...𝑁)((𝑤‘𝑘) · (𝐶 · 𝑋))) |
| 401 | 391, 394,
400 | 3eqtr4d 2666 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑤‘𝑘) · (𝐴↑𝑘)) = Σ𝑛 ∈ (1...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋)) |
| 402 | 401 | sumeq2dv 14433 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝐴↑𝑘)) = Σ𝑘 ∈ (0...𝑁)Σ𝑛 ∈ (1...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋)) |
| 403 | 111 | ad2ant2lr 784 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → (𝑤‘𝑘) ∈ ℂ) |
| 404 | 114 | anasss 679 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → 𝐶 ∈ ℂ) |
| 405 | 404 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → 𝐶 ∈ ℂ) |
| 406 | 403, 405 | mulcld 10060 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → ((𝑤‘𝑘) · 𝐶) ∈ ℂ) |
| 407 | 387 | ad2ant2rl 785 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → 𝑋 ∈ ℂ) |
| 408 | 406, 407 | mulcld 10060 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑛 ∈ (1...𝑁))) → (((𝑤‘𝑘) · 𝐶) · 𝑋) ∈ ℂ) |
| 409 | 45, 71, 408 | fsumcom 14507 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁)Σ𝑛 ∈ (1...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋) = Σ𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋)) |
| 410 | 402, 409 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) → Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝐴↑𝑘)) = Σ𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋)) |
| 411 | 410 | adantrr 753 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝐴↑𝑘)) = Σ𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋)) |
| 412 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝜑 |
| 413 | | nfv 1843 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛 𝑤:(0...𝑁)⟶ℚ |
| 414 | | nfra1 2941 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 |
| 415 | 413, 414 | nfan 1828 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0) |
| 416 | 412, 415 | nfan 1828 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) |
| 417 | | rspa 2930 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑛 ∈
(1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0) |
| 418 | 417 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑛 ∈
(1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0 ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) · 𝑋) = (0 · 𝑋)) |
| 419 | 418 | adantll 750 |
. . . . . . . . . . . . . 14
⊢ (((𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) · 𝑋) = (0 · 𝑋)) |
| 420 | 419 | adantll 750 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) · 𝑋) = (0 · 𝑋)) |
| 421 | 387 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) |
| 422 | 95, 421, 117 | fsummulc1 14517 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑤:(0...𝑁)⟶ℚ) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) · 𝑋) = Σ𝑘 ∈ (0...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋)) |
| 423 | 422 | adantlrr 757 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) · 𝑋) = Σ𝑘 ∈ (0...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋)) |
| 424 | 387 | mul02d 10234 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (0 · 𝑋) = 0) |
| 425 | 424 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → (0 · 𝑋) = 0) |
| 426 | 420, 423,
425 | 3eqtr3d 2664 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) ∧ 𝑛 ∈ (1...𝑁)) → Σ𝑘 ∈ (0...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋) = 0) |
| 427 | 426 | ex 450 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → (𝑛 ∈ (1...𝑁) → Σ𝑘 ∈ (0...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋) = 0)) |
| 428 | 416, 427 | ralrimi 2957 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋) = 0) |
| 429 | 428 | sumeq2d 14432 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → Σ𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)(((𝑤‘𝑘) · 𝐶) · 𝑋) = Σ𝑛 ∈ (1...𝑁)0) |
| 430 | 411, 429 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝐴↑𝑘)) = Σ𝑛 ∈ (1...𝑁)0) |
| 431 | 24 | olci 406 |
. . . . . . . . 9
⊢
((1...𝑁) ⊆
(ℤ≥‘𝐵) ∨ (1...𝑁) ∈ Fin) |
| 432 | | sumz 14453 |
. . . . . . . . 9
⊢
(((1...𝑁) ⊆
(ℤ≥‘𝐵) ∨ (1...𝑁) ∈ Fin) → Σ𝑛 ∈ (1...𝑁)0 = 0) |
| 433 | 431, 432 | ax-mp 5 |
. . . . . . . 8
⊢
Σ𝑛 ∈
(1...𝑁)0 =
0 |
| 434 | 430, 433 | syl6eq 2672 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝐴↑𝑘)) = 0) |
| 435 | 385, 434 | eqtrd 2656 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤:(0...𝑁)⟶ℚ ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))‘𝐴) = 0) |
| 436 | 435 | adantrlr 759 |
. . . . 5
⊢ ((𝜑 ∧ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})) ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))‘𝐴) = 0) |
| 437 | | fveq1 6190 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) → (𝑥‘𝐴) = ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))‘𝐴)) |
| 438 | 437 | eqeq1d 2624 |
. . . . . 6
⊢ (𝑥 = (𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) → ((𝑥‘𝐴) = 0 ↔ ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))‘𝐴) = 0)) |
| 439 | 438 | rspcev 3309 |
. . . . 5
⊢ (((𝑦 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘))) ∈ ((Poly‘ℚ) ∖
{0𝑝}) ∧ ((𝑦 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · (𝑦↑𝑘)))‘𝐴) = 0) → ∃𝑥 ∈ ((Poly‘ℚ) ∖
{0𝑝})(𝑥‘𝐴) = 0) |
| 440 | 377, 436,
439 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ ((𝑤:(0...𝑁)⟶ℚ ∧ 𝑤 ≠ ((0...𝑁) × {0})) ∧ ∀𝑛 ∈ (1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → ∃𝑥 ∈ ((Poly‘ℚ) ∖
{0𝑝})(𝑥‘𝐴) = 0) |
| 441 | 278, 440 | sylanr1 684 |
. . 3
⊢ ((𝜑 ∧ (𝑤 ∈ ((ℚ ↑𝑚
(0...𝑁)) ∖
{((0...𝑁) × {0})})
∧ ∀𝑛 ∈
(1...𝑁)Σ𝑘 ∈ (0...𝑁)((𝑤‘𝑘) · 𝐶) = 0)) → ∃𝑥 ∈ ((Poly‘ℚ) ∖
{0𝑝})(𝑥‘𝐴) = 0) |
| 442 | 275, 441 | rexlimddv 3035 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ((Poly‘ℚ) ∖
{0𝑝})(𝑥‘𝐴) = 0) |
| 443 | | elqaa 24077 |
. 2
⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧
∃𝑥 ∈
((Poly‘ℚ) ∖ {0𝑝})(𝑥‘𝐴) = 0)) |
| 444 | 1, 442, 443 | sylanbrc 698 |
1
⊢ (𝜑 → 𝐴 ∈ 𝔸) |