HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsl1i Structured version   Visualization version   GIF version

Theorem mdsl1i 29180
Description: If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsl.1 𝐴C
mdsl.2 𝐵C
Assertion
Ref Expression
mdsl1i (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ 𝐴 𝑀 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdsl1i
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3627 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝐴𝐵) ⊆ 𝑥 ↔ (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵))))
2 sseq1 3626 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 ⊆ (𝐴 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))
31, 2anbi12d 747 . . . . . . 7 (𝑥 = (𝑦 (𝐴𝐵)) → (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) ↔ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))))
4 sseq1 3626 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥𝐵 ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
5 oveq1 6657 . . . . . . . . . 10 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 𝐴) = ((𝑦 (𝐴𝐵)) ∨ 𝐴))
65ineq1d 3813 . . . . . . . . 9 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝑥 𝐴) ∩ 𝐵) = (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵))
7 oveq1 6657 . . . . . . . . 9 (𝑥 = (𝑦 (𝐴𝐵)) → (𝑥 (𝐴𝐵)) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))
86, 7eqeq12d 2637 . . . . . . . 8 (𝑥 = (𝑦 (𝐴𝐵)) → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))
94, 8imbi12d 334 . . . . . . 7 (𝑥 = (𝑦 (𝐴𝐵)) → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))))
103, 9imbi12d 334 . . . . . 6 (𝑥 = (𝑦 (𝐴𝐵)) → ((((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
1110rspccv 3306 . . . . 5 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → ((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
12 impexp 462 . . . . . . 7 (((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))) ↔ (((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))))
13 impexp 462 . . . . . . 7 ((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)))) ↔ ((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))))
1412, 13bitr2i 265 . . . . . 6 (((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))) ↔ ((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))
15 inss2 3834 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ 𝐵
16 mdsl.1 . . . . . . . . . . . . . . 15 𝐴C
17 mdsl.2 . . . . . . . . . . . . . . 15 𝐵C
1816, 17chincli 28319 . . . . . . . . . . . . . 14 (𝐴𝐵) ∈ C
19 chlub 28368 . . . . . . . . . . . . . 14 ((𝑦C ∧ (𝐴𝐵) ∈ C𝐵C ) → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2018, 17, 19mp3an23 1416 . . . . . . . . . . . . 13 (𝑦C → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) ↔ (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2120biimpd 219 . . . . . . . . . . . 12 (𝑦C → ((𝑦𝐵 ∧ (𝐴𝐵) ⊆ 𝐵) → (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2215, 21mpan2i 713 . . . . . . . . . . 11 (𝑦C → (𝑦𝐵 → (𝑦 (𝐴𝐵)) ⊆ 𝐵))
2317, 16chub2i 28329 . . . . . . . . . . . 12 𝐵 ⊆ (𝐴 𝐵)
24 sstr 3611 . . . . . . . . . . . 12 (((𝑦 (𝐴𝐵)) ⊆ 𝐵𝐵 ⊆ (𝐴 𝐵)) → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))
2523, 24mpan2 707 . . . . . . . . . . 11 ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))
2622, 25syl6 35 . . . . . . . . . 10 (𝑦C → (𝑦𝐵 → (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))
27 chub2 28367 . . . . . . . . . . 11 (((𝐴𝐵) ∈ C𝑦C ) → (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)))
2818, 27mpan 706 . . . . . . . . . 10 (𝑦C → (𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)))
2926, 28jctild 566 . . . . . . . . 9 (𝑦C → (𝑦𝐵 → ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))))
30 chjcl 28216 . . . . . . . . . 10 ((𝑦C ∧ (𝐴𝐵) ∈ C ) → (𝑦 (𝐴𝐵)) ∈ C )
3118, 30mpan2 707 . . . . . . . . 9 (𝑦C → (𝑦 (𝐴𝐵)) ∈ C )
3229, 31jctild 566 . . . . . . . 8 (𝑦C → (𝑦𝐵 → ((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)))))
3332, 22jcad 555 . . . . . . 7 (𝑦C → (𝑦𝐵 → (((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵)))
34 chjass 28392 . . . . . . . . . . . 12 ((𝑦C ∧ (𝐴𝐵) ∈ C𝐴C ) → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 ((𝐴𝐵) ∨ 𝐴)))
3518, 16, 34mp3an23 1416 . . . . . . . . . . 11 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 ((𝐴𝐵) ∨ 𝐴)))
3618, 16chjcomi 28327 . . . . . . . . . . . . 13 ((𝐴𝐵) ∨ 𝐴) = (𝐴 (𝐴𝐵))
3716, 17chabs1i 28377 . . . . . . . . . . . . 13 (𝐴 (𝐴𝐵)) = 𝐴
3836, 37eqtri 2644 . . . . . . . . . . . 12 ((𝐴𝐵) ∨ 𝐴) = 𝐴
3938oveq2i 6661 . . . . . . . . . . 11 (𝑦 ((𝐴𝐵) ∨ 𝐴)) = (𝑦 𝐴)
4035, 39syl6eq 2672 . . . . . . . . . 10 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ 𝐴) = (𝑦 𝐴))
4140ineq1d 3813 . . . . . . . . 9 (𝑦C → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 𝐴) ∩ 𝐵))
42 chjass 28392 . . . . . . . . . . 11 ((𝑦C ∧ (𝐴𝐵) ∈ C ∧ (𝐴𝐵) ∈ C ) → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))))
4318, 18, 42mp3an23 1416 . . . . . . . . . 10 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))))
4418chjidmi 28380 . . . . . . . . . . 11 ((𝐴𝐵) ∨ (𝐴𝐵)) = (𝐴𝐵)
4544oveq2i 6661 . . . . . . . . . 10 (𝑦 ((𝐴𝐵) ∨ (𝐴𝐵))) = (𝑦 (𝐴𝐵))
4643, 45syl6eq 2672 . . . . . . . . 9 (𝑦C → ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) = (𝑦 (𝐴𝐵)))
4741, 46eqeq12d 2637 . . . . . . . 8 (𝑦C → ((((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) ↔ ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
4847biimpd 219 . . . . . . 7 (𝑦C → ((((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵)) → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
4933, 48imim12d 81 . . . . . 6 (𝑦C → (((((𝑦 (𝐴𝐵)) ∈ C ∧ ((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵))) ∧ (𝑦 (𝐴𝐵)) ⊆ 𝐵) → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))) → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5014, 49syl5bi 232 . . . . 5 (𝑦C → (((𝑦 (𝐴𝐵)) ∈ C → (((𝐴𝐵) ⊆ (𝑦 (𝐴𝐵)) ∧ (𝑦 (𝐴𝐵)) ⊆ (𝐴 𝐵)) → ((𝑦 (𝐴𝐵)) ⊆ 𝐵 → (((𝑦 (𝐴𝐵)) ∨ 𝐴) ∩ 𝐵) = ((𝑦 (𝐴𝐵)) ∨ (𝐴𝐵))))) → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5111, 50syl5com 31 . . . 4 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → (𝑦C → (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5251ralrimiv 2965 . . 3 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
53 mdbr 29153 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵)))))
5416, 17, 53mp2an 708 . . 3 (𝐴 𝑀 𝐵 ↔ ∀𝑦C (𝑦𝐵 → ((𝑦 𝐴) ∩ 𝐵) = (𝑦 (𝐴𝐵))))
5552, 54sylibr 224 . 2 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) → 𝐴 𝑀 𝐵)
56 mdbr 29153 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
5716, 17, 56mp2an 708 . . 3 (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))))
58 ax-1 6 . . . 4 ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
5958ralimi 2952 . . 3 (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) → ∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6057, 59sylbi 207 . 2 (𝐴 𝑀 𝐵 → ∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
6155, 60impbii 199 1 (∀𝑥C (((𝐴𝐵) ⊆ 𝑥𝑥 ⊆ (𝐴 𝐵)) → (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))) ↔ 𝐴 𝑀 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cin 3573  wss 3574   class class class wbr 4653  (class class class)co 6650   C cch 27786   chj 27790   𝑀 cmd 27823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942  ax-hcompl 28059
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-lm 21033  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cfil 23053  df-cau 23054  df-cmet 23055  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-dip 27556  df-ssp 27577  df-ph 27668  df-cbn 27719  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-hlim 27829  df-hcau 27830  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-chj 28169  df-md 29139
This theorem is referenced by:  mdsl2i  29181  cvmdi  29183
  Copyright terms: Public domain W3C validator