| Step | Hyp | Ref
| Expression |
| 1 | | pm13.183 3344 |
. . . . . 6
⊢ (𝐶 ∈ 𝑉 → (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 2 | 1 | ralimi 2952 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 𝐶 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 3 | | ralbi 3068 |
. . . . 5
⊢
(∀𝑦 ∈
𝐵 (𝐶 = 𝐷 ↔ ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) → (∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 4 | 2, 3 | syl 17 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 𝐶 ∈ 𝑉 → (∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 5 | 4 | ralimi 2952 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 6 | | ralbi 3068 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 7 | 5, 6 | syl 17 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝐷 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 8 | | df-mpt2 6655 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 9 | | df-mpt2 6655 |
. . . 4
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)} |
| 10 | 8, 9 | eqeq12i 2636 |
. . 3
⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) ↔ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)}) |
| 11 | | eqoprab2b 6713 |
. . 3
⊢
({〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)} ↔ ∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷))) |
| 12 | | pm5.32 668 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) ↔ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷))) |
| 13 | 12 | albii 1747 |
. . . . . 6
⊢
(∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) ↔ ∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷))) |
| 14 | | 19.21v 1868 |
. . . . . 6
⊢
(∀𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 15 | 13, 14 | bitr3i 266 |
. . . . 5
⊢
(∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 16 | 15 | 2albii 1748 |
. . . 4
⊢
(∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 17 | | r2al 2939 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷) ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷))) |
| 18 | 16, 17 | bitr4i 267 |
. . 3
⊢
(∀𝑥∀𝑦∀𝑧(((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐷)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) |
| 19 | 10, 11, 18 | 3bitri 286 |
. 2
⊢ ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 ↔ 𝑧 = 𝐷)) |
| 20 | 7, 19 | syl6rbbr 279 |
1
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ((𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 = 𝐷)) |