| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptv | Structured version Visualization version GIF version | ||
| Description: Function with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.) |
| Ref | Expression |
|---|---|
| mptv | ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 4730 | . 2 ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} | |
| 2 | vex 3203 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur 527 | . . 3 ⊢ (𝑦 = 𝐵 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝐵)) |
| 4 | 3 | opabbii 4717 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝐵)} |
| 5 | 1, 4 | eqtr4i 2647 | 1 ⊢ (𝑥 ∈ V ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 {copab 4712 ↦ cmpt 4729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-opab 4713 df-mpt 4730 |
| This theorem is referenced by: df1st2 7263 df2nd2 7264 fsplit 7282 rankf 8657 cnmptid 21464 |
| Copyright terms: Public domain | W3C validator |