MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptid Structured version   Visualization version   GIF version

Theorem cnmptid 21464
Description: The identity function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
Assertion
Ref Expression
cnmptid (𝜑 → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋

Proof of Theorem cnmptid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 equcom 1945 . . . . . 6 (𝑥 = 𝑦𝑦 = 𝑥)
21opabbii 4717 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥}
3 dfid3 5025 . . . . 5 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
4 mptv 4751 . . . . 5 (𝑥 ∈ V ↦ 𝑥) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = 𝑥}
52, 3, 43eqtr4i 2654 . . . 4 I = (𝑥 ∈ V ↦ 𝑥)
65reseq1i 5392 . . 3 ( I ↾ 𝑋) = ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋)
7 ssv 3625 . . . 4 𝑋 ⊆ V
8 resmpt 5449 . . . 4 (𝑋 ⊆ V → ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) = (𝑥𝑋𝑥))
97, 8ax-mp 5 . . 3 ((𝑥 ∈ V ↦ 𝑥) ↾ 𝑋) = (𝑥𝑋𝑥)
106, 9eqtri 2644 . 2 ( I ↾ 𝑋) = (𝑥𝑋𝑥)
11 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
12 idcn 21061 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
1311, 12syl 17 . 2 (𝜑 → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽))
1410, 13syl5eqelr 2706 1 (𝜑 → (𝑥𝑋𝑥) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  {copab 4712  cmpt 4729   I cid 5023  cres 5116  cfv 5888  (class class class)co 6650  TopOnctopon 20715   Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cn 21031
This theorem is referenced by:  xkoinjcn  21490  txconn  21492  imasnopn  21493  imasncld  21494  imasncls  21495  pt1hmeo  21609  istgp2  21895  tmdmulg  21896  tmdlactcn  21906  clsnsg  21913  tgpt0  21922  tlmtgp  21999  nmcn  22647  expcn  22675  divccn  22676  cncfmptid  22715  cdivcncf  22720  iirevcn  22729  iihalf1cn  22731  iihalf2cn  22733  icchmeo  22740  evth2  22759  pcocn  22817  pcopt  22822  pcopt2  22823  pcoass  22824  csscld  23048  clsocv  23049  dvcnvlem  23739  resqrtcn  24490  sqrtcn  24491  efrlim  24696  ipasslem7  27691  occllem  28162  hmopidmchi  29010  rmulccn  29974  cxpcncf1  30673  cvxpconn  31224  cvmlift2lem2  31286  cvmlift2lem3  31287  cvmliftphtlem  31299  knoppcnlem10  32492  cxpcncf2  40113
  Copyright terms: Public domain W3C validator