| Step | Hyp | Ref
| Expression |
| 1 | | vex 3203 |
. . . . 5
⊢ 𝑥 ∈ V |
| 2 | | vex 3203 |
. . . . 5
⊢ 𝑦 ∈ V |
| 3 | 1, 2 | brcnv 5305 |
. . . 4
⊢ (𝑥◡(1st ↾ I )𝑦 ↔ 𝑦(1st ↾ I )𝑥) |
| 4 | 1 | brres 5402 |
. . . . 5
⊢ (𝑦(1st ↾ I )𝑥 ↔ (𝑦1st 𝑥 ∧ 𝑦 ∈ I )) |
| 5 | | 19.42v 1918 |
. . . . . . 7
⊢
(∃𝑧((1st ‘𝑦) = 𝑥 ∧ 𝑦 = 〈𝑧, 𝑧〉) ↔ ((1st ‘𝑦) = 𝑥 ∧ ∃𝑧 𝑦 = 〈𝑧, 𝑧〉)) |
| 6 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 7 | 6, 6 | op1std 7178 |
. . . . . . . . . 10
⊢ (𝑦 = 〈𝑧, 𝑧〉 → (1st ‘𝑦) = 𝑧) |
| 8 | 7 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝑧, 𝑧〉 → ((1st ‘𝑦) = 𝑥 ↔ 𝑧 = 𝑥)) |
| 9 | 8 | pm5.32ri 670 |
. . . . . . . 8
⊢
(((1st ‘𝑦) = 𝑥 ∧ 𝑦 = 〈𝑧, 𝑧〉) ↔ (𝑧 = 𝑥 ∧ 𝑦 = 〈𝑧, 𝑧〉)) |
| 10 | 9 | exbii 1774 |
. . . . . . 7
⊢
(∃𝑧((1st ‘𝑦) = 𝑥 ∧ 𝑦 = 〈𝑧, 𝑧〉) ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑦 = 〈𝑧, 𝑧〉)) |
| 11 | | fo1st 7188 |
. . . . . . . . . 10
⊢
1st :V–onto→V |
| 12 | | fofn 6117 |
. . . . . . . . . 10
⊢
(1st :V–onto→V → 1st Fn V) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . . . 9
⊢
1st Fn V |
| 14 | | fnbrfvb 6236 |
. . . . . . . . 9
⊢
((1st Fn V ∧ 𝑦 ∈ V) → ((1st
‘𝑦) = 𝑥 ↔ 𝑦1st 𝑥)) |
| 15 | 13, 2, 14 | mp2an 708 |
. . . . . . . 8
⊢
((1st ‘𝑦) = 𝑥 ↔ 𝑦1st 𝑥) |
| 16 | | dfid2 5027 |
. . . . . . . . . 10
⊢ I =
{〈𝑧, 𝑧〉 ∣ 𝑧 = 𝑧} |
| 17 | 16 | eleq2i 2693 |
. . . . . . . . 9
⊢ (𝑦 ∈ I ↔ 𝑦 ∈ {〈𝑧, 𝑧〉 ∣ 𝑧 = 𝑧}) |
| 18 | | nfe1 2027 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧∃𝑧(𝑦 = 〈𝑧, 𝑧〉 ∧ 𝑧 = 𝑧) |
| 19 | 18 | 19.9 2072 |
. . . . . . . . . 10
⊢
(∃𝑧∃𝑧(𝑦 = 〈𝑧, 𝑧〉 ∧ 𝑧 = 𝑧) ↔ ∃𝑧(𝑦 = 〈𝑧, 𝑧〉 ∧ 𝑧 = 𝑧)) |
| 20 | | elopab 4983 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {〈𝑧, 𝑧〉 ∣ 𝑧 = 𝑧} ↔ ∃𝑧∃𝑧(𝑦 = 〈𝑧, 𝑧〉 ∧ 𝑧 = 𝑧)) |
| 21 | | equid 1939 |
. . . . . . . . . . . 12
⊢ 𝑧 = 𝑧 |
| 22 | 21 | biantru 526 |
. . . . . . . . . . 11
⊢ (𝑦 = 〈𝑧, 𝑧〉 ↔ (𝑦 = 〈𝑧, 𝑧〉 ∧ 𝑧 = 𝑧)) |
| 23 | 22 | exbii 1774 |
. . . . . . . . . 10
⊢
(∃𝑧 𝑦 = 〈𝑧, 𝑧〉 ↔ ∃𝑧(𝑦 = 〈𝑧, 𝑧〉 ∧ 𝑧 = 𝑧)) |
| 24 | 19, 20, 23 | 3bitr4i 292 |
. . . . . . . . 9
⊢ (𝑦 ∈ {〈𝑧, 𝑧〉 ∣ 𝑧 = 𝑧} ↔ ∃𝑧 𝑦 = 〈𝑧, 𝑧〉) |
| 25 | 17, 24 | bitr2i 265 |
. . . . . . . 8
⊢
(∃𝑧 𝑦 = 〈𝑧, 𝑧〉 ↔ 𝑦 ∈ I ) |
| 26 | 15, 25 | anbi12i 733 |
. . . . . . 7
⊢
(((1st ‘𝑦) = 𝑥 ∧ ∃𝑧 𝑦 = 〈𝑧, 𝑧〉) ↔ (𝑦1st 𝑥 ∧ 𝑦 ∈ I )) |
| 27 | 5, 10, 26 | 3bitr3ri 291 |
. . . . . 6
⊢ ((𝑦1st 𝑥 ∧ 𝑦 ∈ I ) ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑦 = 〈𝑧, 𝑧〉)) |
| 28 | | id 22 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) |
| 29 | 28, 28 | opeq12d 4410 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → 〈𝑧, 𝑧〉 = 〈𝑥, 𝑥〉) |
| 30 | 29 | eqeq2d 2632 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑦 = 〈𝑧, 𝑧〉 ↔ 𝑦 = 〈𝑥, 𝑥〉)) |
| 31 | 1, 30 | ceqsexv 3242 |
. . . . . 6
⊢
(∃𝑧(𝑧 = 𝑥 ∧ 𝑦 = 〈𝑧, 𝑧〉) ↔ 𝑦 = 〈𝑥, 𝑥〉) |
| 32 | 27, 31 | bitri 264 |
. . . . 5
⊢ ((𝑦1st 𝑥 ∧ 𝑦 ∈ I ) ↔ 𝑦 = 〈𝑥, 𝑥〉) |
| 33 | 4, 32 | bitri 264 |
. . . 4
⊢ (𝑦(1st ↾ I )𝑥 ↔ 𝑦 = 〈𝑥, 𝑥〉) |
| 34 | 3, 33 | bitri 264 |
. . 3
⊢ (𝑥◡(1st ↾ I )𝑦 ↔ 𝑦 = 〈𝑥, 𝑥〉) |
| 35 | 34 | opabbii 4717 |
. 2
⊢
{〈𝑥, 𝑦〉 ∣ 𝑥◡(1st ↾ I )𝑦} = {〈𝑥, 𝑦〉 ∣ 𝑦 = 〈𝑥, 𝑥〉} |
| 36 | | relcnv 5503 |
. . 3
⊢ Rel ◡(1st ↾ I ) |
| 37 | | dfrel4v 5584 |
. . 3
⊢ (Rel
◡(1st ↾ I ) ↔
◡(1st ↾ I ) =
{〈𝑥, 𝑦〉 ∣ 𝑥◡(1st ↾ I )𝑦}) |
| 38 | 36, 37 | mpbi 220 |
. 2
⊢ ◡(1st ↾ I ) = {〈𝑥, 𝑦〉 ∣ 𝑥◡(1st ↾ I )𝑦} |
| 39 | | mptv 4751 |
. 2
⊢ (𝑥 ∈ V ↦ 〈𝑥, 𝑥〉) = {〈𝑥, 𝑦〉 ∣ 𝑦 = 〈𝑥, 𝑥〉} |
| 40 | 35, 38, 39 | 3eqtr4i 2654 |
1
⊢ ◡(1st ↾ I ) = (𝑥 ∈ V ↦ 〈𝑥, 𝑥〉) |