MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcflem Structured version   Visualization version   GIF version

Theorem mrcflem 16266
Description: The domain and range of the function expression for Moore closures. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Assertion
Ref Expression
mrcflem (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}):𝒫 𝑋𝐶)
Distinct variable groups:   𝑥,𝑠,𝐶   𝑥,𝑋,𝑠

Proof of Theorem mrcflem
StepHypRef Expression
1 simpl 473 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝐶 ∈ (Moore‘𝑋))
2 ssrab2 3687 . . . 4 {𝑠𝐶𝑥𝑠} ⊆ 𝐶
32a1i 11 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠𝐶𝑥𝑠} ⊆ 𝐶)
4 mre1cl 16254 . . . . . 6 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
54adantr 481 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋𝐶)
6 elpwi 4168 . . . . . 6 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
76adantl 482 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
8 sseq2 3627 . . . . . 6 (𝑠 = 𝑋 → (𝑥𝑠𝑥𝑋))
98elrab 3363 . . . . 5 (𝑋 ∈ {𝑠𝐶𝑥𝑠} ↔ (𝑋𝐶𝑥𝑋))
105, 7, 9sylanbrc 698 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑋 ∈ {𝑠𝐶𝑥𝑠})
11 ne0i 3921 . . . 4 (𝑋 ∈ {𝑠𝐶𝑥𝑠} → {𝑠𝐶𝑥𝑠} ≠ ∅)
1210, 11syl 17 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠𝐶𝑥𝑠} ≠ ∅)
13 mreintcl 16255 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑠𝐶𝑥𝑠} ⊆ 𝐶 ∧ {𝑠𝐶𝑥𝑠} ≠ ∅) → {𝑠𝐶𝑥𝑠} ∈ 𝐶)
141, 3, 12, 13syl3anc 1326 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → {𝑠𝐶𝑥𝑠} ∈ 𝐶)
15 eqid 2622 . 2 (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}) = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠})
1614, 15fmptd 6385 1 (𝐶 ∈ (Moore‘𝑋) → (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}):𝒫 𝑋𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wne 2794  {crab 2916  wss 3574  c0 3915  𝒫 cpw 4158   cint 4475  cmpt 4729  wf 5884  cfv 5888  Moorecmre 16242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246
This theorem is referenced by:  fnmrc  16267  mrcfval  16268  mrcf  16269
  Copyright terms: Public domain W3C validator