Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclval Structured version   Visualization version   GIF version

Theorem mzpclval 37288
Description: Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclval (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
Distinct variable groups:   𝑉,𝑝,𝑓,𝑔   𝑖,𝑉,𝑝   𝑗,𝑉,𝑥,𝑝

Proof of Theorem mzpclval
Dummy variables 𝑣 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5 (𝑣 = 𝑉 → (ℤ ↑𝑚 𝑣) = (ℤ ↑𝑚 𝑉))
21oveq2d 6666 . . . 4 (𝑣 = 𝑉 → (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) = (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
32pweqd 4163 . . 3 (𝑣 = 𝑉 → 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) = 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
41xpeq1d 5138 . . . . . . . 8 (𝑣 = 𝑉 → ((ℤ ↑𝑚 𝑣) × {𝑎}) = ((ℤ ↑𝑚 𝑉) × {𝑎}))
54eleq1d 2686 . . . . . . 7 (𝑣 = 𝑉 → (((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ↔ ((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝))
65ralbidv 2986 . . . . . 6 (𝑣 = 𝑉 → (∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ↔ ∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝))
7 sneq 4187 . . . . . . . . 9 (𝑎 = 𝑖 → {𝑎} = {𝑖})
87xpeq2d 5139 . . . . . . . 8 (𝑎 = 𝑖 → ((ℤ ↑𝑚 𝑉) × {𝑎}) = ((ℤ ↑𝑚 𝑉) × {𝑖}))
98eleq1d 2686 . . . . . . 7 (𝑎 = 𝑖 → (((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝 ↔ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝))
109cbvralv 3171 . . . . . 6 (∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝)
116, 10syl6bb 276 . . . . 5 (𝑣 = 𝑉 → (∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝))
121mpteq1d 4738 . . . . . . . 8 (𝑣 = 𝑉 → (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)))
1312eleq1d 2686 . . . . . . 7 (𝑣 = 𝑉 → ((𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝))
1413raleqbi1dv 3146 . . . . . 6 (𝑣 = 𝑉 → (∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑏𝑉 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝))
15 fveq2 6191 . . . . . . . . . 10 (𝑏 = 𝑗 → (𝑐𝑏) = (𝑐𝑗))
1615mpteq2dv 4745 . . . . . . . . 9 (𝑏 = 𝑗 → (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)))
1716eleq1d 2686 . . . . . . . 8 (𝑏 = 𝑗 → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)) ∈ 𝑝))
18 fveq1 6190 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐𝑗) = (𝑥𝑗))
1918cbvmptv 4750 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)) = (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗))
2019eleq1i 2692 . . . . . . . 8 ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)
2117, 20syl6bb 276 . . . . . . 7 (𝑏 = 𝑗 → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝))
2221cbvralv 3171 . . . . . 6 (∀𝑏𝑉 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)
2314, 22syl6bb 276 . . . . 5 (𝑣 = 𝑉 → (∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝))
2411, 23anbi12d 747 . . . 4 (𝑣 = 𝑉 → ((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ↔ (∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)))
2524anbi1d 741 . . 3 (𝑣 = 𝑉 → (((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝)) ↔ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))))
263, 25rabeqbidv 3195 . 2 (𝑣 = 𝑉 → {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) ∣ ((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))} = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
27 df-mzpcl 37286 . 2 mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) ∣ ((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
28 ovex 6678 . . . 4 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∈ V
2928pwex 4848 . . 3 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∈ V
3029rabex 4813 . 2 {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))} ∈ V
3126, 27, 30fvmpt 6282 1 (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  𝒫 cpw 4158  {csn 4177  cmpt 4729   × cxp 5112  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑚 cmap 7857   + caddc 9939   · cmul 9941  cz 11377  mzPolyCldcmzpcl 37284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-mzpcl 37286
This theorem is referenced by:  elmzpcl  37289
  Copyright terms: Public domain W3C validator