| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0f | Structured version Visualization version GIF version | ||
| Description: A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 3931 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| eq0f.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| n0f | ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2795 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 2 | eq0f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | neq0f 3926 | . 2 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| 4 | 1, 3 | bitri 264 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 = wceq 1483 ∃wex 1704 ∈ wcel 1990 Ⅎwnfc 2751 ≠ wne 2794 ∅c0 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: n0 3931 abn0 3954 cp 8754 ordtconnlem1 29970 inn0f 39242 |
| Copyright terms: Public domain | W3C validator |