MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0fOLD Structured version   Visualization version   GIF version

Theorem n0fOLD 3928
Description: Obsolete proof of n0f 3927 as of 15-Jul-2021. (Contributed by NM, 17-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
eq0f.1 𝑥𝐴
Assertion
Ref Expression
n0fOLD (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)

Proof of Theorem n0fOLD
StepHypRef Expression
1 eq0f.1 . . . . 5 𝑥𝐴
2 nfcv 2764 . . . . 5 𝑥
31, 2cleqf 2790 . . . 4 (𝐴 = ∅ ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
4 noel 3919 . . . . . 6 ¬ 𝑥 ∈ ∅
54nbn 362 . . . . 5 𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ ∅))
65albii 1747 . . . 4 (∀𝑥 ¬ 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ ∅))
73, 6bitr4i 267 . . 3 (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
87necon3abii 2840 . 2 (𝐴 ≠ ∅ ↔ ¬ ∀𝑥 ¬ 𝑥𝐴)
9 df-ex 1705 . 2 (∃𝑥 𝑥𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥𝐴)
108, 9bitr4i 267 1 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wal 1481   = wceq 1483  wex 1704  wcel 1990  wnfc 2751  wne 2794  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator