![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0fOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of n0f 3927 as of 15-Jul-2021. (Contributed by NM, 17-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eq0f.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
n0fOLD | ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2764 | . . . . 5 ⊢ Ⅎ𝑥∅ | |
3 | 1, 2 | cleqf 2790 | . . . 4 ⊢ (𝐴 = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
4 | noel 3919 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
5 | 4 | nbn 362 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
6 | 5 | albii 1747 | . . . 4 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ∅)) |
7 | 3, 6 | bitr4i 267 | . . 3 ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
8 | 7 | necon3abii 2840 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
9 | df-ex 1705 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 ↔ ¬ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | |
10 | 8, 9 | bitr4i 267 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∀wal 1481 = wceq 1483 ∃wex 1704 ∈ wcel 1990 Ⅎwnfc 2751 ≠ wne 2794 ∅c0 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-nul 3916 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |