| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1843 |
. . . . 5
⊢
Ⅎ𝑟(𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) |
| 2 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑟𝐴 |
| 3 | | nfra2 2946 |
. . . . . . 7
⊢
Ⅎ𝑟∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴) |
| 4 | 2, 3 | nfral 2945 |
. . . . . 6
⊢
Ⅎ𝑟∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴) |
| 5 | 4 | nfn 1784 |
. . . . 5
⊢
Ⅎ𝑟 ¬
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴) |
| 6 | 1, 5 | nfan 1828 |
. . . 4
⊢
Ⅎ𝑟((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) |
| 7 | | tospos 29658 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Toset → 𝐾 ∈ Poset) |
| 8 | | posprs 16949 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Poset → 𝐾 ∈ Preset
) |
| 9 | | ordtconn.j |
. . . . . . . . . . 11
⊢ 𝐽 = (ordTop‘ ≤
) |
| 10 | | ordtconn.l |
. . . . . . . . . . . . . 14
⊢ ≤ =
((le‘𝐾) ∩ (𝐵 × 𝐵)) |
| 11 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(le‘𝐾) ∈
V |
| 12 | 11 | inex1 4799 |
. . . . . . . . . . . . . 14
⊢
((le‘𝐾) ∩
(𝐵 × 𝐵)) ∈ V |
| 13 | 10, 12 | eqeltri 2697 |
. . . . . . . . . . . . 13
⊢ ≤ ∈
V |
| 14 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢ dom ≤ = dom
≤ |
| 15 | 14 | ordttopon 20997 |
. . . . . . . . . . . . 13
⊢ ( ≤ ∈ V
→ (ordTop‘ ≤ ) ∈
(TopOn‘dom ≤ )) |
| 16 | 13, 15 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(ordTop‘ ≤ ) ∈
(TopOn‘dom ≤ ) |
| 17 | | ordtconn.x |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝐾) |
| 18 | 17, 10 | prsdm 29960 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Preset → dom ≤ = 𝐵) |
| 19 | 18 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Preset →
(TopOn‘dom ≤ ) = (TopOn‘𝐵)) |
| 20 | 16, 19 | syl5eleq 2707 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Preset →
(ordTop‘ ≤ ) ∈
(TopOn‘𝐵)) |
| 21 | 9, 20 | syl5eqel 2705 |
. . . . . . . . . 10
⊢ (𝐾 ∈ Preset → 𝐽 ∈ (TopOn‘𝐵)) |
| 22 | 7, 8, 21 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐾 ∈ Toset → 𝐽 ∈ (TopOn‘𝐵)) |
| 23 | 22 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝐵)) |
| 24 | 23 | adantlr 751 |
. . . . . . 7
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝐵)) |
| 25 | | simpllr 799 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
| 26 | 25 | adantlr 751 |
. . . . . . 7
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
| 27 | | simpll 790 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → 𝐾 ∈ Toset) |
| 28 | 27, 7, 8 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → 𝐾 ∈ Preset ) |
| 29 | | snex 4908 |
. . . . . . . . . . . . . . . 16
⊢ {𝐵} ∈ V |
| 30 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘𝐾)
∈ V |
| 31 | 17, 30 | eqeltri 2697 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐵 ∈ V |
| 32 | 31 | mptex 6486 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∈ V |
| 33 | 32 | rnex 7100 |
. . . . . . . . . . . . . . . . 17
⊢ ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∈ V |
| 34 | 31 | mptex 6486 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ∈ V |
| 35 | 34 | rnex 7100 |
. . . . . . . . . . . . . . . . 17
⊢ ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ∈ V |
| 36 | 33, 35 | unex 6956 |
. . . . . . . . . . . . . . . 16
⊢ (ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) ∈ V |
| 37 | 29, 36 | unex 6956 |
. . . . . . . . . . . . . . 15
⊢ ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) ∈ V |
| 38 | | ssfii 8325 |
. . . . . . . . . . . . . . 15
⊢ (({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) ∈ V → ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) ⊆ (fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))))) |
| 39 | 37, 38 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) ⊆ (fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) |
| 40 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(fi‘({𝐵} ∪
(ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) ∈ V |
| 41 | | bastg 20770 |
. . . . . . . . . . . . . . 15
⊢
((fi‘({𝐵}
∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) ∈ V → (fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) ⊆ (topGen‘(fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))))) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(fi‘({𝐵} ∪
(ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))) ⊆ (topGen‘(fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))))) |
| 43 | 39, 42 | sstri 3612 |
. . . . . . . . . . . . 13
⊢ ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) ⊆ (topGen‘(fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))))) |
| 44 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
| 45 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
| 46 | 17, 10, 44, 45 | ordtprsval 29964 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ Preset →
(ordTop‘ ≤ ) =
(topGen‘(fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))))) |
| 47 | 9, 46 | syl5eq 2668 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ Preset → 𝐽 =
(topGen‘(fi‘({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})))))) |
| 48 | 43, 47 | syl5sseqr 3654 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ Preset → ({𝐵} ∪ (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}))) ⊆ 𝐽) |
| 49 | 48 | unssbd 3791 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ Preset → (ran
(𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) ⊆ 𝐽) |
| 50 | 28, 49 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → (ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ∪ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) ⊆ 𝐽) |
| 51 | 50 | unssbd 3791 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ⊆ 𝐽) |
| 52 | | breq2 4657 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → (𝑟 ≤ 𝑧 ↔ 𝑟 ≤ 𝑦)) |
| 53 | 52 | notbid 308 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (¬ 𝑟 ≤ 𝑧 ↔ ¬ 𝑟 ≤ 𝑦)) |
| 54 | 53 | cbvrabv 3199 |
. . . . . . . . . . . 12
⊢ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑦} |
| 55 | | breq1 4656 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑟 → (𝑥 ≤ 𝑦 ↔ 𝑟 ≤ 𝑦)) |
| 56 | 55 | notbid 308 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑟 → (¬ 𝑥 ≤ 𝑦 ↔ ¬ 𝑟 ≤ 𝑦)) |
| 57 | 56 | rabbidv 3189 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑟 → {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑦}) |
| 58 | 57 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑟 → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦} ↔ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑦})) |
| 59 | 58 | rspcev 3309 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ 𝐵 ∧ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑦}) → ∃𝑥 ∈ 𝐵 {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
| 60 | 54, 59 | mpan2 707 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
| 61 | 31 | rabex 4813 |
. . . . . . . . . . . 12
⊢ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∈ V |
| 62 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) = (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
| 63 | 62 | elrnmpt 5372 |
. . . . . . . . . . . 12
⊢ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∈ V → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∈ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ↔ ∃𝑥 ∈ 𝐵 {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
| 64 | 61, 63 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∈ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ↔ ∃𝑥 ∈ 𝐵 {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) |
| 65 | 60, 64 | sylibr 224 |
. . . . . . . . . 10
⊢ (𝑟 ∈ 𝐵 → {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∈ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
| 66 | 65 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∈ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦})) |
| 67 | 51, 66 | sseldd 3604 |
. . . . . . . 8
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∈ 𝐽) |
| 68 | 67 | ad2antrr 762 |
. . . . . . 7
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∈ 𝐽) |
| 69 | 50 | unssad 3790 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ⊆ 𝐽) |
| 70 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → (𝑧 ≤ 𝑟 ↔ 𝑦 ≤ 𝑟)) |
| 71 | 70 | notbid 308 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → (¬ 𝑧 ≤ 𝑟 ↔ ¬ 𝑦 ≤ 𝑟)) |
| 72 | 71 | cbvrabv 3199 |
. . . . . . . . . . . 12
⊢ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑟} |
| 73 | | breq2 4657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑟 → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑟)) |
| 74 | 73 | notbid 308 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑟 → (¬ 𝑦 ≤ 𝑥 ↔ ¬ 𝑦 ≤ 𝑟)) |
| 75 | 74 | rabbidv 3189 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑟 → {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑟}) |
| 76 | 75 | eqeq2d 2632 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑟 → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥} ↔ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑟})) |
| 77 | 76 | rspcev 3309 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ 𝐵 ∧ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑟}) → ∃𝑥 ∈ 𝐵 {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
| 78 | 72, 77 | mpan2 707 |
. . . . . . . . . . 11
⊢ (𝑟 ∈ 𝐵 → ∃𝑥 ∈ 𝐵 {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
| 79 | 31 | rabex 4813 |
. . . . . . . . . . . 12
⊢ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∈ V |
| 80 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) = (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
| 81 | 80 | elrnmpt 5372 |
. . . . . . . . . . . 12
⊢ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∈ V → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∈ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ↔ ∃𝑥 ∈ 𝐵 {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥})) |
| 82 | 79, 81 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∈ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) ↔ ∃𝑥 ∈ 𝐵 {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} = {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) |
| 83 | 78, 82 | sylibr 224 |
. . . . . . . . . 10
⊢ (𝑟 ∈ 𝐵 → {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∈ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥})) |
| 84 | 83 | adantl 482 |
. . . . . . . . 9
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∈ ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥})) |
| 85 | 69, 84 | sseldd 3604 |
. . . . . . . 8
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∈ 𝐽) |
| 86 | 85 | ad2antrr 762 |
. . . . . . 7
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∈ 𝐽) |
| 87 | | simpll 790 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → ((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵)) |
| 88 | | simpr 477 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → ¬ 𝑟 ∈ 𝐴) |
| 89 | 87, 88 | jca 554 |
. . . . . . . 8
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 90 | | simplrl 800 |
. . . . . . . 8
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥) |
| 91 | | ssel 3597 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
| 92 | 91 | ancrd 577 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) |
| 93 | 92 | anim1d 588 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑥) → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑟 ≤ 𝑥))) |
| 94 | 93 | impl 650 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑟 ≤ 𝑥) → ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑟 ≤ 𝑥)) |
| 95 | | elin 3796 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ 𝐴) ↔ (𝑥 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∧ 𝑥 ∈ 𝐴)) |
| 96 | | breq2 4657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑥 → (𝑟 ≤ 𝑧 ↔ 𝑟 ≤ 𝑥)) |
| 97 | 96 | notbid 308 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑥 → (¬ 𝑟 ≤ 𝑧 ↔ ¬ 𝑟 ≤ 𝑥)) |
| 98 | 97 | elrab 3363 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑥)) |
| 99 | 98 | anbi1i 731 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∧ 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑥) ∧ 𝑥 ∈ 𝐴)) |
| 100 | | an32 839 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑥) ∧ 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑟 ≤ 𝑥)) |
| 101 | 95, 99, 100 | 3bitri 286 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ 𝐴) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑟 ≤ 𝑥)) |
| 102 | 94, 101 | sylibr 224 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑟 ≤ 𝑥) → 𝑥 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ 𝐴)) |
| 103 | | ne0i 3921 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ 𝐴) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ 𝐴) ≠ ∅) |
| 104 | 102, 103 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑟 ≤ 𝑥) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ 𝐴) ≠ ∅) |
| 105 | 25, 104 | sylanl1 682 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝑟 ≤ 𝑥) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ 𝐴) ≠ ∅) |
| 106 | 105 | r19.29an 3077 |
. . . . . . . 8
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ ∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ 𝐴) ≠ ∅) |
| 107 | 89, 90, 106 | syl2anc 693 |
. . . . . . 7
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ 𝐴) ≠ ∅) |
| 108 | | simplrr 801 |
. . . . . . . 8
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟) |
| 109 | | ssel 3597 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) |
| 110 | 109 | ancrd 577 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴))) |
| 111 | 110 | anim1d 588 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ 𝐵 → ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑟) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ≤ 𝑟))) |
| 112 | 111 | impl 650 |
. . . . . . . . . . . 12
⊢ (((𝐴 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ≤ 𝑟) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ≤ 𝑟)) |
| 113 | | elin 3796 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∩ 𝐴) ↔ (𝑦 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∧ 𝑦 ∈ 𝐴)) |
| 114 | 71 | elrab 3363 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ≤ 𝑟)) |
| 115 | 114 | anbi1i 731 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∧ 𝑦 ∈ 𝐴) ↔ ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ≤ 𝑟) ∧ 𝑦 ∈ 𝐴)) |
| 116 | | an32 839 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ≤ 𝑟) ∧ 𝑦 ∈ 𝐴) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ≤ 𝑟)) |
| 117 | 113, 115,
116 | 3bitri 286 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∩ 𝐴) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ≤ 𝑟)) |
| 118 | 112, 117 | sylibr 224 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ≤ 𝑟) → 𝑦 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∩ 𝐴)) |
| 119 | | ne0i 3921 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∩ 𝐴) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∩ 𝐴) ≠ ∅) |
| 120 | 118, 119 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ≤ 𝑟) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∩ 𝐴) ≠ ∅) |
| 121 | 25, 120 | sylanl1 682 |
. . . . . . . . 9
⊢
((((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) ∧ ¬ 𝑦 ≤ 𝑟) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∩ 𝐴) ≠ ∅) |
| 122 | 121 | r19.29an 3077 |
. . . . . . . 8
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∩ 𝐴) ≠ ∅) |
| 123 | 89, 108, 122 | syl2anc 693 |
. . . . . . 7
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ∩ 𝐴) ≠ ∅) |
| 124 | 17, 10 | trleile 29666 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑟 ≤ 𝑧 ∨ 𝑧 ≤ 𝑟)) |
| 125 | | oran 517 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑟 ≤ 𝑧 ∨ 𝑧 ≤ 𝑟) ↔ ¬ (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟)) |
| 126 | 124, 125 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ¬ (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟)) |
| 127 | 126 | 3expa 1265 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵) ∧ 𝑧 ∈ 𝐵) → ¬ (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟)) |
| 128 | 127 | nrexdv 3001 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵) → ¬ ∃𝑧 ∈ 𝐵 (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟)) |
| 129 | | rabid 3116 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ↔ (𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧)) |
| 130 | | rabid 3116 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} ↔ (𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟)) |
| 131 | 129, 130 | anbi12i 733 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∧ 𝑧 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ↔ ((𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧) ∧ (𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟))) |
| 132 | | elin 3796 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ↔ (𝑧 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∧ 𝑧 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟})) |
| 133 | | anandi 871 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟)) ↔ ((𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧) ∧ (𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟))) |
| 134 | 131, 132,
133 | 3bitr4i 292 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ↔ (𝑧 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟))) |
| 135 | 134 | exbii 1774 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧 𝑧 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟))) |
| 136 | | nfrab1 3122 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑧{𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} |
| 137 | | nfrab1 3122 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑧{𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟} |
| 138 | 136, 137 | nfin 3820 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) |
| 139 | 138 | n0f 3927 |
. . . . . . . . . . . . . . 15
⊢ (({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟})) |
| 140 | | df-rex 2918 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑧 ∈
𝐵 (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟) ↔ ∃𝑧(𝑧 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟))) |
| 141 | 135, 139,
140 | 3bitr4i 292 |
. . . . . . . . . . . . . 14
⊢ (({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ≠ ∅ ↔ ∃𝑧 ∈ 𝐵 (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟)) |
| 142 | 141 | necon1bbii 2843 |
. . . . . . . . . . . . 13
⊢ (¬
∃𝑧 ∈ 𝐵 (¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟) ↔ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) = ∅) |
| 143 | 128, 142 | sylib 208 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) = ∅) |
| 144 | 143 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) = ∅) |
| 145 | 144 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) = ∅) |
| 146 | 145 | ineq1d 3813 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → (({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ∩ 𝐴) = (∅ ∩ 𝐴)) |
| 147 | | 0in 3969 |
. . . . . . . . 9
⊢ (∅
∩ 𝐴) =
∅ |
| 148 | 146, 147 | syl6eq 2672 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → (({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ∩ 𝐴) = ∅) |
| 149 | 148 | adantlr 751 |
. . . . . . 7
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → (({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∩ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ∩ 𝐴) = ∅) |
| 150 | | simplr 792 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → 𝑟 ∈ 𝐵) |
| 151 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → ¬ 𝑟 ∈ 𝐴) |
| 152 | | vex 3203 |
. . . . . . . . . . . . . . 15
⊢ 𝑟 ∈ V |
| 153 | 152 | snss 4316 |
. . . . . . . . . . . . . 14
⊢ (𝑟 ∈ 𝐵 ↔ {𝑟} ⊆ 𝐵) |
| 154 | | eldif 3584 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ (𝐵 ∖ 𝐴) ↔ (𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴)) |
| 155 | 152 | snss 4316 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 ∈ (𝐵 ∖ 𝐴) ↔ {𝑟} ⊆ (𝐵 ∖ 𝐴)) |
| 156 | 154, 155 | bitr3i 266 |
. . . . . . . . . . . . . . 15
⊢ ((𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴) ↔ {𝑟} ⊆ (𝐵 ∖ 𝐴)) |
| 157 | | ssconb 3743 |
. . . . . . . . . . . . . . 15
⊢ (({𝑟} ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → ({𝑟} ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟}))) |
| 158 | 156, 157 | syl5bb 272 |
. . . . . . . . . . . . . 14
⊢ (({𝑟} ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵) → ((𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟}))) |
| 159 | 153, 158 | sylanb 489 |
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐵) → ((𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟}))) |
| 160 | 159 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Toset ∧ (𝑟 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐵)) → ((𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟}))) |
| 161 | 160 | anass1rs 849 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → ((𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟}))) |
| 162 | 161 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → ((𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴) ↔ 𝐴 ⊆ (𝐵 ∖ {𝑟}))) |
| 163 | 150, 151,
162 | mpbi2and 956 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → 𝐴 ⊆ (𝐵 ∖ {𝑟})) |
| 164 | 7 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 165 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵) |
| 166 | 136, 137 | nfun 3769 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∪ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) |
| 167 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(𝐵 ∖ {𝑟}) |
| 168 | | ianor 509 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟) ↔ (¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟)) |
| 169 | 17, 10 | posrasymb 29657 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟) ↔ 𝑟 = 𝑧)) |
| 170 | | equcom 1945 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑧 ↔ 𝑧 = 𝑟) |
| 171 | 169, 170 | syl6bb 276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟) ↔ 𝑧 = 𝑟)) |
| 172 | 171 | necon3bbid 2831 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (¬ (𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟) ↔ 𝑧 ≠ 𝑟)) |
| 173 | 168, 172 | syl5bbr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟) ↔ 𝑧 ≠ 𝑟)) |
| 174 | 173 | 3expia 1267 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵) → (𝑧 ∈ 𝐵 → ((¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟) ↔ 𝑧 ≠ 𝑟))) |
| 175 | 174 | pm5.32d 671 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵) → ((𝑧 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟)) ↔ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 𝑟))) |
| 176 | 129, 130 | orbi12i 543 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∨ 𝑧 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ↔ ((𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧) ∨ (𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟))) |
| 177 | | elun 3753 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∪ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ↔ (𝑧 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∨ 𝑧 ∈ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟})) |
| 178 | | andi 911 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟)) ↔ ((𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧) ∨ (𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟))) |
| 179 | 176, 177,
178 | 3bitr4ri 293 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐵 ∧ (¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟)) ↔ 𝑧 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∪ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟})) |
| 180 | | eldifsn 4317 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (𝐵 ∖ {𝑟}) ↔ (𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 𝑟)) |
| 181 | 180 | bicomi 214 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 𝑟) ↔ 𝑧 ∈ (𝐵 ∖ {𝑟})) |
| 182 | 175, 179,
181 | 3bitr3g 302 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵) → (𝑧 ∈ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∪ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) ↔ 𝑧 ∈ (𝐵 ∖ {𝑟}))) |
| 183 | 165, 166,
167, 182 | eqrd 3622 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∪ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) = (𝐵 ∖ {𝑟})) |
| 184 | 164, 150,
183 | syl2anc 693 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∪ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟}) = (𝐵 ∖ {𝑟})) |
| 185 | 163, 184 | sseqtr4d 3642 |
. . . . . . . 8
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → 𝐴 ⊆ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∪ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟})) |
| 186 | 185 | adantlr 751 |
. . . . . . 7
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → 𝐴 ⊆ ({𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧} ∪ {𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟})) |
| 187 | 24, 26, 68, 86, 107, 123, 149, 186 | nconnsubb 21226 |
. . . . . 6
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) ∧ ¬ 𝑟 ∈ 𝐴) → ¬ (𝐽 ↾t 𝐴) ∈ Conn) |
| 188 | 187 | anasss 679 |
. . . . 5
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ((∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟) ∧ ¬ 𝑟 ∈ 𝐴)) → ¬ (𝐽 ↾t 𝐴) ∈ Conn) |
| 189 | 188 | adantllr 755 |
. . . 4
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) ∧ 𝑟 ∈ 𝐵) ∧ ((∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟) ∧ ¬ 𝑟 ∈ 𝐴)) → ¬ (𝐽 ↾t 𝐴) ∈ Conn) |
| 190 | | rexanali 2998 |
. . . . . . . . . . 11
⊢
(∃𝑟 ∈
𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ¬ ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) |
| 191 | 190 | rexbii 3041 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐴 ∃𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ∃𝑦 ∈ 𝐴 ¬ ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) |
| 192 | | rexcom 3099 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐴 ∃𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ∃𝑟 ∈ 𝐵 ∃𝑦 ∈ 𝐴 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 193 | | rexnal 2995 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐴 ¬ ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴) ↔ ¬ ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) |
| 194 | 191, 192,
193 | 3bitr3i 290 |
. . . . . . . . 9
⊢
(∃𝑟 ∈
𝐵 ∃𝑦 ∈ 𝐴 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ¬ ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) |
| 195 | 194 | rexbii 3041 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 ∃𝑟 ∈ 𝐵 ∃𝑦 ∈ 𝐴 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) |
| 196 | | rexcom 3099 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 ∃𝑟 ∈ 𝐵 ∃𝑦 ∈ 𝐴 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ∃𝑟 ∈ 𝐵 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 197 | | rexnal 2995 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 ¬ ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) |
| 198 | 195, 196,
197 | 3bitr3i 290 |
. . . . . . 7
⊢
(∃𝑟 ∈
𝐵 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) |
| 199 | | r19.41v 3089 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
𝐴 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ (∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 200 | 199 | rexbii 3041 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 201 | | r19.41v 3089 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 (∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 202 | | reeanv 3107 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ↔ (∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃𝑦 ∈ 𝐴 𝑟 ≤ 𝑦)) |
| 203 | 202 | anbi1i 731 |
. . . . . . . . 9
⊢
((∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ((∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃𝑦 ∈ 𝐴 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 204 | 200, 201,
203 | 3bitri 286 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐴 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ((∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃𝑦 ∈ 𝐴 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 205 | 204 | rexbii 3041 |
. . . . . . 7
⊢
(∃𝑟 ∈
𝐵 ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ∃𝑟 ∈ 𝐵 ((∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃𝑦 ∈ 𝐴 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 206 | 198, 205 | bitr3i 266 |
. . . . . 6
⊢ (¬
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴) ↔ ∃𝑟 ∈ 𝐵 ((∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃𝑦 ∈ 𝐴 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 207 | 27 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝐾 ∈ Toset) |
| 208 | 25 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 209 | | simpllr 799 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑟 ∈ 𝐵) |
| 210 | 17, 10 | trleile 29666 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) → (𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥)) |
| 211 | 207, 208,
209, 210 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥)) |
| 212 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 213 | | simplr 792 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ¬ 𝑟 ∈ 𝐴) |
| 214 | | nelne2 2891 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑟 ∈ 𝐴) → 𝑥 ≠ 𝑟) |
| 215 | 212, 213,
214 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ 𝑟) |
| 216 | 164 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 217 | 17, 10 | posrasymb 29657 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) → ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥) ↔ 𝑥 = 𝑟)) |
| 218 | 217 | necon3bbid 2831 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵) → (¬ (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥) ↔ 𝑥 ≠ 𝑟)) |
| 219 | 216, 208,
209, 218 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (¬ (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥) ↔ 𝑥 ≠ 𝑟)) |
| 220 | 215, 219 | mpbird 247 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ¬ (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥)) |
| 221 | 211, 220 | jca 554 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥) ∧ ¬ (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥))) |
| 222 | | pm5.17 932 |
. . . . . . . . . . . 12
⊢ (((𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥) ∧ ¬ (𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥)) ↔ (𝑥 ≤ 𝑟 ↔ ¬ 𝑟 ≤ 𝑥)) |
| 223 | 221, 222 | sylib 208 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑥 ≤ 𝑟 ↔ ¬ 𝑟 ≤ 𝑥)) |
| 224 | 223 | rexbidva 3049 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥)) |
| 225 | 27 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐾 ∈ Toset) |
| 226 | | simpllr 799 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑟 ∈ 𝐵) |
| 227 | 25 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐵) |
| 228 | 17, 10 | trleile 29666 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟)) |
| 229 | 225, 226,
227, 228 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟)) |
| 230 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 231 | | simplr 792 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ¬ 𝑟 ∈ 𝐴) |
| 232 | | nelne2 2891 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑟 ∈ 𝐴) → 𝑦 ≠ 𝑟) |
| 233 | 230, 231,
232 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ≠ 𝑟) |
| 234 | 233 | necomd 2849 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑟 ≠ 𝑦) |
| 235 | 164 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝐾 ∈ Poset) |
| 236 | 17, 10 | posrasymb 29657 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟) ↔ 𝑟 = 𝑦)) |
| 237 | 236 | necon3bbid 2831 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (¬ (𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟) ↔ 𝑟 ≠ 𝑦)) |
| 238 | 235, 226,
227, 237 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (¬ (𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟) ↔ 𝑟 ≠ 𝑦)) |
| 239 | 234, 238 | mpbird 247 |
. . . . . . . . . . . . 13
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ¬ (𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟)) |
| 240 | 229, 239 | jca 554 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟) ∧ ¬ (𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟))) |
| 241 | | pm5.17 932 |
. . . . . . . . . . . 12
⊢ (((𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟) ∧ ¬ (𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟)) ↔ (𝑟 ≤ 𝑦 ↔ ¬ 𝑦 ≤ 𝑟)) |
| 242 | 240, 241 | sylib 208 |
. . . . . . . . . . 11
⊢
(((((𝐾 ∈ Toset
∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑟 ≤ 𝑦 ↔ ¬ 𝑦 ≤ 𝑟)) |
| 243 | 242 | rexbidva 3049 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)) |
| 244 | 224, 243 | anbi12d 747 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) ∧ ¬ 𝑟 ∈ 𝐴) → ((∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃𝑦 ∈ 𝐴 𝑟 ≤ 𝑦) ↔ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟))) |
| 245 | 244 | ex 450 |
. . . . . . . 8
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → (¬ 𝑟 ∈ 𝐴 → ((∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃𝑦 ∈ 𝐴 𝑟 ≤ 𝑦) ↔ (∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟)))) |
| 246 | 245 | pm5.32rd 672 |
. . . . . . 7
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ 𝑟 ∈ 𝐵) → (((∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃𝑦 ∈ 𝐴 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ((∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟) ∧ ¬ 𝑟 ∈ 𝐴))) |
| 247 | 246 | rexbidva 3049 |
. . . . . 6
⊢ ((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) → (∃𝑟 ∈ 𝐵 ((∃𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃𝑦 ∈ 𝐴 𝑟 ≤ 𝑦) ∧ ¬ 𝑟 ∈ 𝐴) ↔ ∃𝑟 ∈ 𝐵 ((∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟) ∧ ¬ 𝑟 ∈ 𝐴))) |
| 248 | 206, 247 | syl5bb 272 |
. . . . 5
⊢ ((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) → (¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴) ↔ ∃𝑟 ∈ 𝐵 ((∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟) ∧ ¬ 𝑟 ∈ 𝐴))) |
| 249 | 248 | biimpa 501 |
. . . 4
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) → ∃𝑟 ∈ 𝐵 ((∃𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟) ∧ ¬ 𝑟 ∈ 𝐴)) |
| 250 | 6, 189, 249 | r19.29af 3076 |
. . 3
⊢ (((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) ∧ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴)) → ¬ (𝐽 ↾t 𝐴) ∈ Conn) |
| 251 | 250 | ex 450 |
. 2
⊢ ((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) → (¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴) → ¬ (𝐽 ↾t 𝐴) ∈ Conn)) |
| 252 | 251 | con4d 114 |
1
⊢ ((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) → ((𝐽 ↾t 𝐴) ∈ Conn → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴))) |