MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neival Structured version   Visualization version   GIF version

Theorem neival 20906
Description: The set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neival ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
Distinct variable groups:   𝑣,𝑔,𝐽   𝑆,𝑔,𝑣   𝑔,𝑋,𝑣

Proof of Theorem neival
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . 5 𝑋 = 𝐽
21neifval 20903 . . . 4 (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}))
32fveq1d 6193 . . 3 (𝐽 ∈ Top → ((nei‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)})‘𝑆))
43adantr 481 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) = ((𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)})‘𝑆))
51topopn 20711 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
6 elpw2g 4827 . . . . 5 (𝑋𝐽 → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
75, 6syl 17 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
87biimpar 502 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
9 pwexg 4850 . . . . 5 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
10 rabexg 4812 . . . . 5 (𝒫 𝑋 ∈ V → {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ∈ V)
115, 9, 103syl 18 . . . 4 (𝐽 ∈ Top → {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ∈ V)
1211adantr 481 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ∈ V)
13 sseq1 3626 . . . . . . 7 (𝑥 = 𝑆 → (𝑥𝑔𝑆𝑔))
1413anbi1d 741 . . . . . 6 (𝑥 = 𝑆 → ((𝑥𝑔𝑔𝑣) ↔ (𝑆𝑔𝑔𝑣)))
1514rexbidv 3052 . . . . 5 (𝑥 = 𝑆 → (∃𝑔𝐽 (𝑥𝑔𝑔𝑣) ↔ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)))
1615rabbidv 3189 . . . 4 (𝑥 = 𝑆 → {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)} = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
17 eqid 2622 . . . 4 (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)})
1816, 17fvmptg 6280 . . 3 ((𝑆 ∈ 𝒫 𝑋 ∧ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ∈ V) → ((𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)})‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
198, 12, 18syl2anc 693 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)})‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
204, 19eqtrd 2656 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158   cuni 4436  cmpt 4729  cfv 5888  Topctop 20698  neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-nei 20902
This theorem is referenced by:  isnei  20907
  Copyright terms: Public domain W3C validator