![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplbi2 | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
simplbi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpri 218 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
3 | 2 | ex 450 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: simplbi2com 657 sspss 3706 neldif 3735 reuss2 3907 pssdifn0 3944 ordunidif 5773 eceqoveq 7853 infxpenlem 8836 ackbij1lem18 9059 isf32lem2 9176 ingru 9637 indpi 9729 nqereu 9751 elfz0ubfz0 12443 elfzmlbp 12450 elfzo0z 12509 fzofzim 12514 fzo1fzo0n0 12518 elfzodifsumelfzo 12533 2swrd1eqwrdeq 13454 swrdswrd 13460 swrdccatin1 13483 swrd2lsw 13695 dfgcd2 15263 algcvga 15292 pcprendvds 15545 restntr 20986 filconn 21687 filssufilg 21715 ufileu 21723 ufilen 21734 alexsubALTlem3 21853 blcld 22310 causs 23096 itg2addlem 23525 rplogsum 25216 wlkonl1iedg 26561 trlf1 26595 spthdifv 26629 upgrwlkdvde 26633 usgr2pth 26660 pthdlem2 26664 uspgrn2crct 26700 crctcshwlkn0 26713 clwlkclwwlklem2 26901 3spthd 27036 ofpreima2 29466 esumpinfval 30135 eulerpartlemf 30432 sltres 31815 bj-elid2 33086 fin2so 33396 fdc 33541 lshpcmp 34275 lfl1 34357 frege124d 38053 onfrALTlem2 38761 3ornot23VD 39082 ordelordALTVD 39103 onfrALTlem2VD 39125 ndmaovass 41286 elfz2z 41325 lighneallem4 41527 |
Copyright terms: Public domain | W3C validator |