![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1d | Structured version Visualization version GIF version |
Description: A contraposition deduction. (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
con1d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Ref | Expression |
---|---|
con1d | ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con1d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
2 | notnot 136 | . . 3 ⊢ (𝜒 → ¬ ¬ 𝜒) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ ¬ 𝜒)) |
4 | 3 | con4d 114 | 1 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt3d 140 con1 143 pm2.24d 147 con3d 148 pm2.61d 170 pm2.8 895 dedlem0b 1001 meredith 1566 axc11nlemOLD2 1988 axc16nf 2137 hbntOLD 2145 axc11nlemOLD 2160 axc11nlemALT 2306 necon3bd 2808 necon1bd 2812 sspss 3706 neldif 3735 ssonprc 6992 limsssuc 7050 limom 7080 onfununi 7438 pw2f1olem 8064 domtriord 8106 pssnn 8178 ordtypelem10 8432 rankxpsuc 8745 carden2a 8792 fidomtri2 8820 alephdom 8904 isf32lem12 9186 isfin1-3 9208 isfin7-2 9218 entric 9379 inttsk 9596 zeo 11463 zeo2 11464 xrlttri 11972 xaddf 12055 elfzonelfzo 12570 fzonfzoufzol 12571 elfznelfzo 12573 om2uzf1oi 12752 hashnfinnn0 13152 ruclem3 14962 sumodd 15111 bitsinv1lem 15163 sadcaddlem 15179 phiprmpw 15481 iserodd 15540 fldivp1 15601 prmpwdvds 15608 vdwlem6 15690 sylow2alem2 18033 efgs1b 18149 fctop 20808 cctop 20810 ppttop 20811 iccpnfcnv 22743 iccpnfhmeo 22744 iscau2 23075 ovolicc2lem2 23286 mbfeqalem 23409 limccnp2 23656 radcnv0 24170 psercnlem1 24179 pserdvlem2 24182 logtayl 24406 cxpsqrt 24449 leibpilem1 24667 rlimcnp2 24693 amgm 24717 pntpbnd1 25275 pntlem3 25298 atssma 29237 spc2d 29313 supxrnemnf 29534 xrge0iifcnv 29979 eulerpartlemf 30432 nolesgn2o 31824 arg-ax 32415 pw2f1ocnv 37604 clsk1independent 38344 pm10.57 38570 con5 38728 con3ALT2 38736 xrred 39581 afvco2 41256 islininds2 42273 |
Copyright terms: Public domain | W3C validator |