![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Structured version Visualization version GIF version |
Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
pm2.61d2.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
pm2.61d2.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
pm2.61d2 | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d2.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | pm2.61d2.1 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | |
4 | 2, 3 | pm2.61d 170 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.61ii 177 jaoi 394 nfald2 2331 nfsbd 2442 2ax6elem 2449 sbal1 2460 sbal2 2461 nfabd2 2784 rgen2a 2977 posn 5187 frsn 5189 relimasn 5488 nfriotad 6619 tfinds 7059 curry1val 7270 curry2val 7274 onfununi 7438 findcard2s 8201 xpfi 8231 fiint 8237 acndom 8874 dfac12k 8969 iundom2g 9362 nqereu 9751 ltapr 9867 xrmax1 12006 xrmin2 12009 max1ALT 12017 hasheq0 13154 swrdnd2 13433 cshw1 13568 bezout 15260 ptbasfi 21384 filconn 21687 pcopt 22822 ioorinv 23344 itg1addlem2 23464 itg1addlem4 23466 itgss 23578 bddmulibl 23605 pthdlem2 26664 mdsymlem6 29267 sumdmdlem2 29278 bj-ax6elem1 32651 wl-equsb4 33338 wl-sbalnae 33345 poimirlem13 33422 poimirlem25 33434 poimirlem27 33436 sbgoldbaltlem1 41667 setrec2fun 42439 |
Copyright terms: Public domain | W3C validator |