MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlimsucg Structured version   Visualization version   GIF version

Theorem nlimsucg 7042
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
nlimsucg (𝐴𝑉 → ¬ Lim suc 𝐴)

Proof of Theorem nlimsucg
StepHypRef Expression
1 limord 5784 . . . 4 (Lim suc 𝐴 → Ord suc 𝐴)
2 ordsuc 7014 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
31, 2sylibr 224 . . 3 (Lim suc 𝐴 → Ord 𝐴)
4 limuni 5785 . . 3 (Lim suc 𝐴 → suc 𝐴 = suc 𝐴)
5 ordunisuc 7032 . . . . 5 (Ord 𝐴 suc 𝐴 = 𝐴)
65eqeq2d 2632 . . . 4 (Ord 𝐴 → (suc 𝐴 = suc 𝐴 ↔ suc 𝐴 = 𝐴))
7 ordirr 5741 . . . . . 6 (Ord 𝐴 → ¬ 𝐴𝐴)
8 eleq2 2690 . . . . . . 7 (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴𝐴𝐴))
98notbid 308 . . . . . 6 (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴))
107, 9syl5ibrcom 237 . . . . 5 (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴))
11 sucidg 5803 . . . . . 6 (𝐴𝑉𝐴 ∈ suc 𝐴)
1211con3i 150 . . . . 5 𝐴 ∈ suc 𝐴 → ¬ 𝐴𝑉)
1310, 12syl6 35 . . . 4 (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴𝑉))
146, 13sylbid 230 . . 3 (Ord 𝐴 → (suc 𝐴 = suc 𝐴 → ¬ 𝐴𝑉))
153, 4, 14sylc 65 . 2 (Lim suc 𝐴 → ¬ 𝐴𝑉)
1615con2i 134 1 (𝐴𝑉 → ¬ Lim suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1483  wcel 1990   cuni 4436  Ord word 5722  Lim wlim 5724  suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729
This theorem is referenced by:  tz7.44-2  7503  rankxpsuc  8745  dfrdg2  31701  dfrdg4  32058
  Copyright terms: Public domain W3C validator