MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmvs Structured version   Visualization version   GIF version

Theorem nmvs 22480
Description: Defining property of a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnlm.v 𝑉 = (Base‘𝑊)
isnlm.n 𝑁 = (norm‘𝑊)
isnlm.s · = ( ·𝑠𝑊)
isnlm.f 𝐹 = (Scalar‘𝑊)
isnlm.k 𝐾 = (Base‘𝐹)
isnlm.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
nmvs ((𝑊 ∈ NrmMod ∧ 𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌)))

Proof of Theorem nmvs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnlm.v . . . . 5 𝑉 = (Base‘𝑊)
2 isnlm.n . . . . 5 𝑁 = (norm‘𝑊)
3 isnlm.s . . . . 5 · = ( ·𝑠𝑊)
4 isnlm.f . . . . 5 𝐹 = (Scalar‘𝑊)
5 isnlm.k . . . . 5 𝐾 = (Base‘𝐹)
6 isnlm.a . . . . 5 𝐴 = (norm‘𝐹)
71, 2, 3, 4, 5, 6isnlm 22479 . . . 4 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
87simprbi 480 . . 3 (𝑊 ∈ NrmMod → ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))
9 oveq1 6657 . . . . . 6 (𝑥 = 𝑋 → (𝑥 · 𝑦) = (𝑋 · 𝑦))
109fveq2d 6195 . . . . 5 (𝑥 = 𝑋 → (𝑁‘(𝑥 · 𝑦)) = (𝑁‘(𝑋 · 𝑦)))
11 fveq2 6191 . . . . . 6 (𝑥 = 𝑋 → (𝐴𝑥) = (𝐴𝑋))
1211oveq1d 6665 . . . . 5 (𝑥 = 𝑋 → ((𝐴𝑥) · (𝑁𝑦)) = ((𝐴𝑋) · (𝑁𝑦)))
1310, 12eqeq12d 2637 . . . 4 (𝑥 = 𝑋 → ((𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)) ↔ (𝑁‘(𝑋 · 𝑦)) = ((𝐴𝑋) · (𝑁𝑦))))
14 oveq2 6658 . . . . . 6 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
1514fveq2d 6195 . . . . 5 (𝑦 = 𝑌 → (𝑁‘(𝑋 · 𝑦)) = (𝑁‘(𝑋 · 𝑌)))
16 fveq2 6191 . . . . . 6 (𝑦 = 𝑌 → (𝑁𝑦) = (𝑁𝑌))
1716oveq2d 6666 . . . . 5 (𝑦 = 𝑌 → ((𝐴𝑋) · (𝑁𝑦)) = ((𝐴𝑋) · (𝑁𝑌)))
1815, 17eqeq12d 2637 . . . 4 (𝑦 = 𝑌 → ((𝑁‘(𝑋 · 𝑦)) = ((𝐴𝑋) · (𝑁𝑦)) ↔ (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
1913, 18rspc2v 3322 . . 3 ((𝑋𝐾𝑌𝑉) → (∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
208, 19syl5com 31 . 2 (𝑊 ∈ NrmMod → ((𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌))))
21203impib 1262 1 ((𝑊 ∈ NrmMod ∧ 𝑋𝐾𝑌𝑉) → (𝑁‘(𝑋 · 𝑌)) = ((𝐴𝑋) · (𝑁𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650   · cmul 9941  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  LModclmod 18863  normcnm 22381  NrmGrpcngp 22382  NrmRingcnrg 22384  NrmModcnlm 22385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-nlm 22391
This theorem is referenced by:  nlmdsdi  22485  nlmdsdir  22486  nlmmul0or  22487  lssnlm  22505  nmoleub2lem3  22915  nmoleub3  22919  ncvsprp  22952  cphnmvs  22990  nmmulg  30012
  Copyright terms: Public domain W3C validator