| Step | Hyp | Ref
| Expression |
| 1 | | nmoleub2.n |
. 2
⊢ 𝑁 = (𝑆 normOp 𝑇) |
| 2 | | nmoleub2.v |
. 2
⊢ 𝑉 = (Base‘𝑆) |
| 3 | | nmoleub2.l |
. 2
⊢ 𝐿 = (norm‘𝑆) |
| 4 | | nmoleub2.m |
. 2
⊢ 𝑀 = (norm‘𝑇) |
| 5 | | nmoleub2.g |
. 2
⊢ 𝐺 = (Scalar‘𝑆) |
| 6 | | nmoleub2.w |
. 2
⊢ 𝐾 = (Base‘𝐺) |
| 7 | | nmoleub2.s |
. 2
⊢ (𝜑 → 𝑆 ∈ (NrmMod ∩
ℂMod)) |
| 8 | | nmoleub2.t |
. 2
⊢ (𝜑 → 𝑇 ∈ (NrmMod ∩
ℂMod)) |
| 9 | | nmoleub2.f |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 10 | | nmoleub2.a |
. 2
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 11 | | nmoleub2.r |
. 2
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
| 12 | | nmoleub3.5 |
. . 3
⊢ (𝜑 → 0 ≤ 𝐴) |
| 13 | 12 | adantr 481 |
. 2
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) → 0 ≤ 𝐴) |
| 14 | 9 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 15 | | nmoleub3.6 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ⊆ 𝐾) |
| 16 | 15 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ℝ ⊆ 𝐾) |
| 17 | 11 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑅 ∈
ℝ+) |
| 18 | 7 | elin1d 3802 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ∈ NrmMod) |
| 19 | 18 | ad3antrrr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑆 ∈ NrmMod) |
| 20 | | nlmngp 22481 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑆 ∈ NrmGrp) |
| 22 | | simprl 794 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑦 ∈ 𝑉) |
| 23 | | simprr 796 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑦 ≠ (0g‘𝑆)) |
| 24 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 25 | 2, 3, 24 | nmrpcl 22424 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ NrmGrp ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆)) → (𝐿‘𝑦) ∈
ℝ+) |
| 26 | 21, 22, 23, 25 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐿‘𝑦) ∈
ℝ+) |
| 27 | 17, 26 | rpdivcld 11889 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑅 / (𝐿‘𝑦)) ∈
ℝ+) |
| 28 | 27 | rpred 11872 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑅 / (𝐿‘𝑦)) ∈ ℝ) |
| 29 | 16, 28 | sseldd 3604 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑅 / (𝐿‘𝑦)) ∈ 𝐾) |
| 30 | | eqid 2622 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
| 31 | | eqid 2622 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑇) |
| 32 | 5, 6, 2, 30, 31 | lmhmlin 19035 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑅 / (𝐿‘𝑦)) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉) → (𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
| 33 | 14, 29, 22, 32 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
| 34 | 33 | fveq2d 6195 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) = (𝑀‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑇)(𝐹‘𝑦)))) |
| 35 | 8 | elin1d 3802 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ NrmMod) |
| 36 | 35 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑇 ∈ NrmMod) |
| 37 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
| 38 | 5, 37 | lmhmsca 19030 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = 𝐺) |
| 39 | 14, 38 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (Scalar‘𝑇) = 𝐺) |
| 40 | 39 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (Base‘(Scalar‘𝑇)) = (Base‘𝐺)) |
| 41 | 40, 6 | syl6eqr 2674 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (Base‘(Scalar‘𝑇)) = 𝐾) |
| 42 | 29, 41 | eleqtrrd 2704 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑅 / (𝐿‘𝑦)) ∈ (Base‘(Scalar‘𝑇))) |
| 43 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 44 | 2, 43 | lmhmf 19034 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇)) |
| 45 | 14, 44 | syl 17 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝐹:𝑉⟶(Base‘𝑇)) |
| 46 | 45, 22 | ffvelrnd 6360 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐹‘𝑦) ∈ (Base‘𝑇)) |
| 47 | | eqid 2622 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
| 48 | | eqid 2622 |
. . . . . . . . 9
⊢
(norm‘(Scalar‘𝑇)) = (norm‘(Scalar‘𝑇)) |
| 49 | 43, 4, 31, 37, 47, 48 | nmvs 22480 |
. . . . . . . 8
⊢ ((𝑇 ∈ NrmMod ∧ (𝑅 / (𝐿‘𝑦)) ∈ (Base‘(Scalar‘𝑇)) ∧ (𝐹‘𝑦) ∈ (Base‘𝑇)) → (𝑀‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑇)(𝐹‘𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿‘𝑦))) · (𝑀‘(𝐹‘𝑦)))) |
| 50 | 36, 42, 46, 49 | syl3anc 1326 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑇)(𝐹‘𝑦))) = (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿‘𝑦))) · (𝑀‘(𝐹‘𝑦)))) |
| 51 | 39 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (norm‘(Scalar‘𝑇)) = (norm‘𝐺)) |
| 52 | 51 | fveq1d 6193 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿‘𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦)))) |
| 53 | 7 | elin2d 3803 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ ℂMod) |
| 54 | 53 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑆 ∈ ℂMod) |
| 55 | 5, 6 | clmabs 22883 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿‘𝑦)) ∈ 𝐾) → (abs‘(𝑅 / (𝐿‘𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦)))) |
| 56 | 54, 29, 55 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (abs‘(𝑅 / (𝐿‘𝑦))) = ((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦)))) |
| 57 | 27 | rpge0d 11876 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 0 ≤ (𝑅 / (𝐿‘𝑦))) |
| 58 | 28, 57 | absidd 14161 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (abs‘(𝑅 / (𝐿‘𝑦))) = (𝑅 / (𝐿‘𝑦))) |
| 59 | 56, 58 | eqtr3d 2658 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦))) = (𝑅 / (𝐿‘𝑦))) |
| 60 | 52, 59 | eqtrd 2656 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿‘𝑦))) = (𝑅 / (𝐿‘𝑦))) |
| 61 | 60 | oveq1d 6665 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (((norm‘(Scalar‘𝑇))‘(𝑅 / (𝐿‘𝑦))) · (𝑀‘(𝐹‘𝑦))) = ((𝑅 / (𝐿‘𝑦)) · (𝑀‘(𝐹‘𝑦)))) |
| 62 | 34, 50, 61 | 3eqtrd 2660 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) = ((𝑅 / (𝐿‘𝑦)) · (𝑀‘(𝐹‘𝑦)))) |
| 63 | 62 | oveq1d 6665 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) = (((𝑅 / (𝐿‘𝑦)) · (𝑀‘(𝐹‘𝑦))) / 𝑅)) |
| 64 | 27 | rpcnd 11874 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑅 / (𝐿‘𝑦)) ∈ ℂ) |
| 65 | | nlmngp 22481 |
. . . . . . . . 9
⊢ (𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp) |
| 66 | 36, 65 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑇 ∈ NrmGrp) |
| 67 | 43, 4 | nmcl 22420 |
. . . . . . . 8
⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝑦) ∈ (Base‘𝑇)) → (𝑀‘(𝐹‘𝑦)) ∈ ℝ) |
| 68 | 66, 46, 67 | syl2anc 693 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ∈ ℝ) |
| 69 | 68 | recnd 10068 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ∈ ℂ) |
| 70 | 17 | rpcnd 11874 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑅 ∈ ℂ) |
| 71 | 17 | rpne0d 11877 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝑅 ≠ 0) |
| 72 | 64, 69, 70, 71 | divassd 10836 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (((𝑅 / (𝐿‘𝑦)) · (𝑀‘(𝐹‘𝑦))) / 𝑅) = ((𝑅 / (𝐿‘𝑦)) · ((𝑀‘(𝐹‘𝑦)) / 𝑅))) |
| 73 | 26 | rpcnd 11874 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐿‘𝑦) ∈ ℂ) |
| 74 | 26 | rpne0d 11877 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐿‘𝑦) ≠ 0) |
| 75 | 69, 70, 73, 71, 74 | dmdcand 10830 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑅 / (𝐿‘𝑦)) · ((𝑀‘(𝐹‘𝑦)) / 𝑅)) = ((𝑀‘(𝐹‘𝑦)) / (𝐿‘𝑦))) |
| 76 | 63, 72, 75 | 3eqtrd 2660 |
. . . 4
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) = ((𝑀‘(𝐹‘𝑦)) / (𝐿‘𝑦))) |
| 77 | 2, 5, 30, 6 | clmvscl 22888 |
. . . . . 6
⊢ ((𝑆 ∈ ℂMod ∧ (𝑅 / (𝐿‘𝑦)) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉) → ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) ∈ 𝑉) |
| 78 | 54, 29, 22, 77 | syl3anc 1326 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) ∈ 𝑉) |
| 79 | | simpllr 799 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) |
| 80 | | eqid 2622 |
. . . . . . . 8
⊢
(norm‘𝐺) =
(norm‘𝐺) |
| 81 | 2, 3, 30, 5, 6, 80 | nmvs 22480 |
. . . . . . 7
⊢ ((𝑆 ∈ NrmMod ∧ (𝑅 / (𝐿‘𝑦)) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉) → (𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦))) · (𝐿‘𝑦))) |
| 82 | 19, 29, 22, 81 | syl3anc 1326 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = (((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦))) · (𝐿‘𝑦))) |
| 83 | 59 | oveq1d 6665 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (((norm‘𝐺)‘(𝑅 / (𝐿‘𝑦))) · (𝐿‘𝑦)) = ((𝑅 / (𝐿‘𝑦)) · (𝐿‘𝑦))) |
| 84 | 70, 73, 74 | divcan1d 10802 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑅 / (𝐿‘𝑦)) · (𝐿‘𝑦)) = 𝑅) |
| 85 | 82, 83, 84 | 3eqtrd 2660 |
. . . . 5
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = 𝑅) |
| 86 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → (𝐿‘𝑥) = (𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) |
| 87 | 86 | eqeq1d 2624 |
. . . . . . 7
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → ((𝐿‘𝑥) = 𝑅 ↔ (𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = 𝑅)) |
| 88 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → (𝐹‘𝑥) = (𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) |
| 89 | 88 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → (𝑀‘(𝐹‘𝑥)) = (𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)))) |
| 90 | 89 | oveq1d 6665 |
. . . . . . . 8
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → ((𝑀‘(𝐹‘𝑥)) / 𝑅) = ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅)) |
| 91 | 90 | breq1d 4663 |
. . . . . . 7
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → (((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴 ↔ ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴)) |
| 92 | 87, 91 | imbi12d 334 |
. . . . . 6
⊢ (𝑥 = ((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) → (((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴) ↔ ((𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴))) |
| 93 | 92 | rspcv 3305 |
. . . . 5
⊢ (((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦) ∈ 𝑉 → (∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴) → ((𝐿‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦)) = 𝑅 → ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴))) |
| 94 | 78, 79, 85, 93 | syl3c 66 |
. . . 4
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑀‘(𝐹‘((𝑅 / (𝐿‘𝑦))( ·𝑠
‘𝑆)𝑦))) / 𝑅) ≤ 𝐴) |
| 95 | 76, 94 | eqbrtrrd 4677 |
. . 3
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → ((𝑀‘(𝐹‘𝑦)) / (𝐿‘𝑦)) ≤ 𝐴) |
| 96 | | simplr 792 |
. . . 4
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → 𝐴 ∈ ℝ) |
| 97 | 68, 96, 26 | ledivmul2d 11926 |
. . 3
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (((𝑀‘(𝐹‘𝑦)) / (𝐿‘𝑦)) ≤ 𝐴 ↔ (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦)))) |
| 98 | 95, 97 | mpbid 222 |
. 2
⊢ ((((𝜑 ∧ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴)) ∧ 𝐴 ∈ ℝ) ∧ (𝑦 ∈ 𝑉 ∧ 𝑦 ≠ (0g‘𝑆))) → (𝑀‘(𝐹‘𝑦)) ≤ (𝐴 · (𝐿‘𝑦))) |
| 99 | 11 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑅 ∈
ℝ+) |
| 100 | 99 | rpred 11872 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑅 ∈ ℝ) |
| 101 | 100 | leidd 10594 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑅 ≤ 𝑅) |
| 102 | | breq1 4656 |
. . 3
⊢ ((𝐿‘𝑥) = 𝑅 → ((𝐿‘𝑥) ≤ 𝑅 ↔ 𝑅 ≤ 𝑅)) |
| 103 | 101, 102 | syl5ibrcom 237 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐿‘𝑥) = 𝑅 → (𝐿‘𝑥) ≤ 𝑅)) |
| 104 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 98, 103 | nmoleub2lem 22914 |
1
⊢ (𝜑 → ((𝑁‘𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑉 ((𝐿‘𝑥) = 𝑅 → ((𝑀‘(𝐹‘𝑥)) / 𝑅) ≤ 𝐴))) |