MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmdsdir Structured version   Visualization version   GIF version

Theorem nlmdsdir 22486
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nlmdsdi.v 𝑉 = (Base‘𝑊)
nlmdsdi.s · = ( ·𝑠𝑊)
nlmdsdi.f 𝐹 = (Scalar‘𝑊)
nlmdsdi.k 𝐾 = (Base‘𝐹)
nlmdsdi.d 𝐷 = (dist‘𝑊)
nlmdsdir.n 𝑁 = (norm‘𝑊)
nlmdsdir.e 𝐸 = (dist‘𝐹)
Assertion
Ref Expression
nlmdsdir ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)))

Proof of Theorem nlmdsdir
StepHypRef Expression
1 simpl 473 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ NrmMod)
2 nlmdsdi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
32nlmngp2 22484 . . . . . . 7 (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp)
43adantr 481 . . . . . 6 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝐹 ∈ NrmGrp)
5 ngpgrp 22403 . . . . . 6 (𝐹 ∈ NrmGrp → 𝐹 ∈ Grp)
64, 5syl 17 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝐹 ∈ Grp)
7 simpr1 1067 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑋𝐾)
8 simpr2 1068 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑌𝐾)
9 nlmdsdi.k . . . . . 6 𝐾 = (Base‘𝐹)
10 eqid 2622 . . . . . 6 (-g𝐹) = (-g𝐹)
119, 10grpsubcl 17495 . . . . 5 ((𝐹 ∈ Grp ∧ 𝑋𝐾𝑌𝐾) → (𝑋(-g𝐹)𝑌) ∈ 𝐾)
126, 7, 8, 11syl3anc 1326 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋(-g𝐹)𝑌) ∈ 𝐾)
13 simpr3 1069 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑍𝑉)
14 nlmdsdi.v . . . . 5 𝑉 = (Base‘𝑊)
15 nlmdsdir.n . . . . 5 𝑁 = (norm‘𝑊)
16 nlmdsdi.s . . . . 5 · = ( ·𝑠𝑊)
17 eqid 2622 . . . . 5 (norm‘𝐹) = (norm‘𝐹)
1814, 15, 16, 2, 9, 17nmvs 22480 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋(-g𝐹)𝑌) ∈ 𝐾𝑍𝑉) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
191, 12, 13, 18syl3anc 1326 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
20 eqid 2622 . . . . 5 (-g𝑊) = (-g𝑊)
21 nlmlmod 22482 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
2221adantr 481 . . . . 5 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ LMod)
2314, 16, 2, 9, 20, 10, 22, 7, 8, 13lmodsubdir 18921 . . . 4 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋(-g𝐹)𝑌) · 𝑍) = ((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍)))
2423fveq2d 6195 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑁‘((𝑋(-g𝐹)𝑌) · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
2519, 24eqtr3d 2658 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
26 nlmdsdir.e . . . . 5 𝐸 = (dist‘𝐹)
2717, 9, 10, 26ngpds 22408 . . . 4 ((𝐹 ∈ NrmGrp ∧ 𝑋𝐾𝑌𝐾) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)))
284, 7, 8, 27syl3anc 1326 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)))
2928oveq1d 6665 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = (((norm‘𝐹)‘(𝑋(-g𝐹)𝑌)) · (𝑁𝑍)))
30 nlmngp 22481 . . . 4 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
3130adantr 481 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → 𝑊 ∈ NrmGrp)
3214, 2, 16, 9lmodvscl 18880 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾𝑍𝑉) → (𝑋 · 𝑍) ∈ 𝑉)
3322, 7, 13, 32syl3anc 1326 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑋 · 𝑍) ∈ 𝑉)
3414, 2, 16, 9lmodvscl 18880 . . . 4 ((𝑊 ∈ LMod ∧ 𝑌𝐾𝑍𝑉) → (𝑌 · 𝑍) ∈ 𝑉)
3522, 8, 13, 34syl3anc 1326 . . 3 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → (𝑌 · 𝑍) ∈ 𝑉)
36 nlmdsdi.d . . . 4 𝐷 = (dist‘𝑊)
3715, 14, 20, 36ngpds 22408 . . 3 ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑍) ∈ 𝑉 ∧ (𝑌 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
3831, 33, 35, 37syl3anc 1326 . 2 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g𝑊)(𝑌 · 𝑍))))
3925, 29, 383eqtr4d 2666 1 ((𝑊 ∈ NrmMod ∧ (𝑋𝐾𝑌𝐾𝑍𝑉)) → ((𝑋𝐸𝑌) · (𝑁𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650   · cmul 9941  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  distcds 15950  Grpcgrp 17422  -gcsg 17424  LModclmod 18863  normcnm 22381  NrmGrpcngp 22382  NrmModcnlm 22385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-topgen 16104  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391
This theorem is referenced by:  nlmvscnlem2  22489
  Copyright terms: Public domain W3C validator