![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmdsdir | Structured version Visualization version GIF version |
Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
nlmdsdi.v | ⊢ 𝑉 = (Base‘𝑊) |
nlmdsdi.s | ⊢ · = ( ·𝑠 ‘𝑊) |
nlmdsdi.f | ⊢ 𝐹 = (Scalar‘𝑊) |
nlmdsdi.k | ⊢ 𝐾 = (Base‘𝐹) |
nlmdsdi.d | ⊢ 𝐷 = (dist‘𝑊) |
nlmdsdir.n | ⊢ 𝑁 = (norm‘𝑊) |
nlmdsdir.e | ⊢ 𝐸 = (dist‘𝐹) |
Ref | Expression |
---|---|
nlmdsdir | ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmMod) | |
2 | nlmdsdi.f | . . . . . . . 8 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | nlmngp2 22484 | . . . . . . 7 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp) |
4 | 3 | adantr 481 | . . . . . 6 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝐹 ∈ NrmGrp) |
5 | ngpgrp 22403 | . . . . . 6 ⊢ (𝐹 ∈ NrmGrp → 𝐹 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝐹 ∈ Grp) |
7 | simpr1 1067 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑋 ∈ 𝐾) | |
8 | simpr2 1068 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑌 ∈ 𝐾) | |
9 | nlmdsdi.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
10 | eqid 2622 | . . . . . 6 ⊢ (-g‘𝐹) = (-g‘𝐹) | |
11 | 9, 10 | grpsubcl 17495 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋(-g‘𝐹)𝑌) ∈ 𝐾) |
12 | 6, 7, 8, 11 | syl3anc 1326 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋(-g‘𝐹)𝑌) ∈ 𝐾) |
13 | simpr3 1069 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑍 ∈ 𝑉) | |
14 | nlmdsdi.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
15 | nlmdsdir.n | . . . . 5 ⊢ 𝑁 = (norm‘𝑊) | |
16 | nlmdsdi.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
17 | eqid 2622 | . . . . 5 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
18 | 14, 15, 16, 2, 9, 17 | nmvs 22480 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋(-g‘𝐹)𝑌) ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
19 | 1, 12, 13, 18 | syl3anc 1326 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
20 | eqid 2622 | . . . . 5 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
21 | nlmlmod 22482 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ LMod) | |
22 | 21 | adantr 481 | . . . . 5 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ LMod) |
23 | 14, 16, 2, 9, 20, 10, 22, 7, 8, 13 | lmodsubdir 18921 | . . . 4 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋(-g‘𝐹)𝑌) · 𝑍) = ((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍))) |
24 | 23 | fveq2d 6195 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑁‘((𝑋(-g‘𝐹)𝑌) · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
25 | 19, 24 | eqtr3d 2658 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
26 | nlmdsdir.e | . . . . 5 ⊢ 𝐸 = (dist‘𝐹) | |
27 | 17, 9, 10, 26 | ngpds 22408 | . . . 4 ⊢ ((𝐹 ∈ NrmGrp ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌))) |
28 | 4, 7, 8, 27 | syl3anc 1326 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋𝐸𝑌) = ((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌))) |
29 | 28 | oveq1d 6665 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = (((norm‘𝐹)‘(𝑋(-g‘𝐹)𝑌)) · (𝑁‘𝑍))) |
30 | nlmngp 22481 | . . . 4 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
31 | 30 | adantr 481 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → 𝑊 ∈ NrmGrp) |
32 | 14, 2, 16, 9 | lmodvscl 18880 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑋 · 𝑍) ∈ 𝑉) |
33 | 22, 7, 13, 32 | syl3anc 1326 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑋 · 𝑍) ∈ 𝑉) |
34 | 14, 2, 16, 9 | lmodvscl 18880 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉) → (𝑌 · 𝑍) ∈ 𝑉) |
35 | 22, 8, 13, 34 | syl3anc 1326 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → (𝑌 · 𝑍) ∈ 𝑉) |
36 | nlmdsdi.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
37 | 15, 14, 20, 36 | ngpds 22408 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ (𝑋 · 𝑍) ∈ 𝑉 ∧ (𝑌 · 𝑍) ∈ 𝑉) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
38 | 31, 33, 35, 37 | syl3anc 1326 | . 2 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍)) = (𝑁‘((𝑋 · 𝑍)(-g‘𝑊)(𝑌 · 𝑍)))) |
39 | 25, 29, 38 | 3eqtr4d 2666 | 1 ⊢ ((𝑊 ∈ NrmMod ∧ (𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ∧ 𝑍 ∈ 𝑉)) → ((𝑋𝐸𝑌) · (𝑁‘𝑍)) = ((𝑋 · 𝑍)𝐷(𝑌 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 · cmul 9941 Basecbs 15857 Scalarcsca 15944 ·𝑠 cvsca 15945 distcds 15950 Grpcgrp 17422 -gcsg 17424 LModclmod 18863 normcnm 22381 NrmGrpcngp 22382 NrmModcnlm 22385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-0g 16102 df-topgen 16104 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mgp 18490 df-ur 18502 df-ring 18549 df-lmod 18865 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-xms 22125 df-ms 22126 df-nm 22387 df-ngp 22388 df-nrg 22390 df-nlm 22391 |
This theorem is referenced by: nlmvscnlem2 22489 |
Copyright terms: Public domain | W3C validator |