![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ocv0 | Structured version Visualization version GIF version |
Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015.) |
Ref | Expression |
---|---|
ocvz.v | ⊢ 𝑉 = (Base‘𝑊) |
ocvz.o | ⊢ ⊥ = (ocv‘𝑊) |
Ref | Expression |
---|---|
ocv0 | ⊢ ( ⊥ ‘∅) = 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3972 | . . 3 ⊢ ∅ ⊆ 𝑉 | |
2 | ocvz.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | eqid 2622 | . . . 4 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
4 | eqid 2622 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | eqid 2622 | . . . 4 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
6 | ocvz.o | . . . 4 ⊢ ⊥ = (ocv‘𝑊) | |
7 | 2, 3, 4, 5, 6 | ocvval 20011 | . . 3 ⊢ (∅ ⊆ 𝑉 → ( ⊥ ‘∅) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) |
8 | 1, 7 | ax-mp 5 | . 2 ⊢ ( ⊥ ‘∅) = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
9 | ral0 4076 | . . . 4 ⊢ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) | |
10 | 9 | rgenw 2924 | . . 3 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊)) |
11 | rabid2 3118 | . . 3 ⊢ (𝑉 = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))) | |
12 | 10, 11 | mpbir 221 | . 2 ⊢ 𝑉 = {𝑥 ∈ 𝑉 ∣ ∀𝑦 ∈ ∅ (𝑥(·𝑖‘𝑊)𝑦) = (0g‘(Scalar‘𝑊))} |
13 | 8, 12 | eqtr4i 2647 | 1 ⊢ ( ⊥ ‘∅) = 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∀wral 2912 {crab 2916 ⊆ wss 3574 ∅c0 3915 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Scalarcsca 15944 ·𝑖cip 15946 0gc0g 16100 ocvcocv 20004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-ocv 20007 |
This theorem is referenced by: ocvz 20022 css1 20034 |
Copyright terms: Public domain | W3C validator |