![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onelssi | Structured version Visualization version GIF version |
Description: A member of an ordinal number is a subset of it. (Contributed by NM, 11-Aug-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onelssi | ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | onelss 5766 | . 2 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ⊆ wss 3574 Oncon0 5723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-tr 4753 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 |
This theorem is referenced by: onelini 5839 oneluni 5840 oawordeulem 7634 cardsdomelir 8799 carddom2 8803 cardaleph 8912 alephsing 9098 domtriomlem 9264 axdc3lem 9272 inar1 9597 nodense 31842 |
Copyright terms: Public domain | W3C validator |