MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsing Structured version   Visualization version   GIF version

Theorem alephsing 9098
Description: The cofinality of a limit aleph is the same as the cofinality of its argument, so if (ℵ‘𝐴) < 𝐴, then (ℵ‘𝐴) is singular. Conversely, if (ℵ‘𝐴) is regular (i.e. weakly inaccessible), then (ℵ‘𝐴) = 𝐴, so 𝐴 has to be rather large (see alephfp 8931). Proposition 11.13 of [TakeutiZaring] p. 103. (Contributed by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
alephsing (Lim 𝐴 → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))

Proof of Theorem alephsing
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 alephfnon 8888 . . . . . . 7 ℵ Fn On
2 fnfun 5988 . . . . . . 7 (ℵ Fn On → Fun ℵ)
31, 2ax-mp 5 . . . . . 6 Fun ℵ
4 simpl 473 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ V)
5 resfunexg 6479 . . . . . 6 ((Fun ℵ ∧ 𝐴 ∈ V) → (ℵ ↾ 𝐴) ∈ V)
63, 4, 5sylancr 695 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴) ∈ V)
7 limelon 5788 . . . . . . . 8 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
8 onss 6990 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ⊆ On)
97, 8syl 17 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ⊆ On)
10 fnssres 6004 . . . . . . 7 ((ℵ Fn On ∧ 𝐴 ⊆ On) → (ℵ ↾ 𝐴) Fn 𝐴)
111, 9, 10sylancr 695 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴) Fn 𝐴)
12 fvres 6207 . . . . . . . . . . 11 (𝑦𝐴 → ((ℵ ↾ 𝐴)‘𝑦) = (ℵ‘𝑦))
1312adantl 482 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) = (ℵ‘𝑦))
14 alephord2i 8900 . . . . . . . . . . 11 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
1514imp 445 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴))
1613, 15eqeltrd 2701 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
177, 16sylan 488 . . . . . . . 8 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑦𝐴) → ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
1817ralrimiva 2966 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → ∀𝑦𝐴 ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴))
19 fnfvrnss 6390 . . . . . . 7 (((ℵ ↾ 𝐴) Fn 𝐴 ∧ ∀𝑦𝐴 ((ℵ ↾ 𝐴)‘𝑦) ∈ (ℵ‘𝐴)) → ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴))
2011, 18, 19syl2anc 693 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴))
21 df-f 5892 . . . . . 6 ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ↔ ((ℵ ↾ 𝐴) Fn 𝐴 ∧ ran (ℵ ↾ 𝐴) ⊆ (ℵ‘𝐴)))
2211, 20, 21sylanbrc 698 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴))
23 alephsmo 8925 . . . . . 6 Smo ℵ
24 fndm 5990 . . . . . . . 8 (ℵ Fn On → dom ℵ = On)
251, 24ax-mp 5 . . . . . . 7 dom ℵ = On
267, 25syl6eleqr 2712 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ dom ℵ)
27 smores 7449 . . . . . 6 ((Smo ℵ ∧ 𝐴 ∈ dom ℵ) → Smo (ℵ ↾ 𝐴))
2823, 26, 27sylancr 695 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → Smo (ℵ ↾ 𝐴))
29 alephlim 8890 . . . . . . . 8 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑦𝐴 (ℵ‘𝑦))
3029eleq2d 2687 . . . . . . 7 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝑥 ∈ (ℵ‘𝐴) ↔ 𝑥 𝑦𝐴 (ℵ‘𝑦)))
31 eliun 4524 . . . . . . . 8 (𝑥 𝑦𝐴 (ℵ‘𝑦) ↔ ∃𝑦𝐴 𝑥 ∈ (ℵ‘𝑦))
32 alephon 8892 . . . . . . . . . 10 (ℵ‘𝑦) ∈ On
3332onelssi 5836 . . . . . . . . 9 (𝑥 ∈ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑦))
3433reximi 3011 . . . . . . . 8 (∃𝑦𝐴 𝑥 ∈ (ℵ‘𝑦) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
3531, 34sylbi 207 . . . . . . 7 (𝑥 𝑦𝐴 (ℵ‘𝑦) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
3630, 35syl6bi 243 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → (𝑥 ∈ (ℵ‘𝐴) → ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
3736ralrimiv 2965 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))
38 feq1 6026 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (𝑓:𝐴⟶(ℵ‘𝐴) ↔ (ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴)))
39 smoeq 7447 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (Smo 𝑓 ↔ Smo (ℵ ↾ 𝐴)))
40 fveq1 6190 . . . . . . . . . . . 12 (𝑓 = (ℵ ↾ 𝐴) → (𝑓𝑦) = ((ℵ ↾ 𝐴)‘𝑦))
4140, 12sylan9eq 2676 . . . . . . . . . . 11 ((𝑓 = (ℵ ↾ 𝐴) ∧ 𝑦𝐴) → (𝑓𝑦) = (ℵ‘𝑦))
4241sseq2d 3633 . . . . . . . . . 10 ((𝑓 = (ℵ ↾ 𝐴) ∧ 𝑦𝐴) → (𝑥 ⊆ (𝑓𝑦) ↔ 𝑥 ⊆ (ℵ‘𝑦)))
4342rexbidva 3049 . . . . . . . . 9 (𝑓 = (ℵ ↾ 𝐴) → (∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦) ↔ ∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
4443ralbidv 2986 . . . . . . . 8 (𝑓 = (ℵ ↾ 𝐴) → (∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦) ↔ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)))
4538, 39, 443anbi123d 1399 . . . . . . 7 (𝑓 = (ℵ ↾ 𝐴) → ((𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) ↔ ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))))
4645spcegv 3294 . . . . . 6 ((ℵ ↾ 𝐴) ∈ V → (((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦)) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦))))
4746imp 445 . . . . 5 (((ℵ ↾ 𝐴) ∈ V ∧ ((ℵ ↾ 𝐴):𝐴⟶(ℵ‘𝐴) ∧ Smo (ℵ ↾ 𝐴) ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (ℵ‘𝑦))) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)))
486, 22, 28, 37, 47syl13anc 1328 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → ∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)))
49 alephon 8892 . . . . 5 (ℵ‘𝐴) ∈ On
50 cfcof 9096 . . . . 5 (((ℵ‘𝐴) ∈ On ∧ 𝐴 ∈ On) → (∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
5149, 7, 50sylancr 695 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → (∃𝑓(𝑓:𝐴⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑥 ∈ (ℵ‘𝐴)∃𝑦𝐴 𝑥 ⊆ (𝑓𝑦)) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
5248, 51mpd 15 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
5352expcom 451 . 2 (Lim 𝐴 → (𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘𝐴)))
54 cf0 9073 . . 3 (cf‘∅) = ∅
55 fvprc 6185 . . . 4 𝐴 ∈ V → (ℵ‘𝐴) = ∅)
5655fveq2d 6195 . . 3 𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘∅))
57 fvprc 6185 . . 3 𝐴 ∈ V → (cf‘𝐴) = ∅)
5854, 56, 573eqtr4a 2682 . 2 𝐴 ∈ V → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
5953, 58pm2.61d1 171 1 (Lim 𝐴 → (cf‘(ℵ‘𝐴)) = (cf‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915   ciun 4520  dom cdm 5114  ran crn 5115  cres 5116  Oncon0 5723  Lim wlim 5724  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  Smo wsmo 7442  cale 8762  cfccf 8763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766  df-cf 8767  df-acn 8768
This theorem is referenced by:  alephom  9407  winafp  9519
  Copyright terms: Public domain W3C validator